Loading…

A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution

In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2024-01, Vol.2024 (1)
Main Authors: Tang, Mingfeng, Wang, Jun, Ou, Yangqi, Tang, Ziqiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543
container_end_page
container_issue 1
container_start_page
container_title International journal of energy research
container_volume 2024
creator Tang, Mingfeng
Wang, Jun
Ou, Yangqi
Tang, Ziqiao
description In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.
doi_str_mv 10.1155/2024/7820395
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129229029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129229029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</originalsourceid><addsrcrecordid>eNotkEFPwzAMhSMEEmNw4wdE4kqZkzRtc5wGDKQxENqk3aosdVmntRlJC9qJv06q7WTLfv6e_Ai5ZfDAmJQjDjwepRkHoeQZGTBQKmIsXp2TAYhERArS1SW58n4LEHYsHZC_MZ3bH9zRxQZdbXGHpnWVoVNs0Om2sg0dO6cP9BONbcrqqztNWxtGRWeQvlW-1q3Z0A_7i47OrPd02RShnduma6rSupousN73wM4hfax88Fh3PeeaXJR65_HmVIdk-fy0mLxEs_fp62Q8iwyT0EaFSDhXMilArGUWmyIpU0jjJJNYyizNZCZAaaULAIMqVeFobUqMOSaZZjIWQ3J35O6d_e7Qt_nWdq4JlrlgXAU4cBVU90eVceELh2W-d1Wt3SFnkPcR533E-Sli8Q8c3m9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129229029</pqid></control><display><type>article</type><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao</creator><contributor>Castaldo, Paolo ; Paolo Castaldo</contributor><creatorcontrib>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao ; Castaldo, Paolo ; Paolo Castaldo</creatorcontrib><description>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/7820395</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Arrays ; Biomass burning ; Configuration management ; Efficiency ; Electric power distribution ; Electric power loss ; Emissions ; Exhaust emissions ; Gas flow ; Gases ; Genetic algorithms ; Heat ; Heat exchange ; Heat recovery systems ; Internal flow ; Operating costs ; Optimization algorithms ; Optimization techniques ; Production costs ; Reconfiguration ; Research methodology ; Semiconductors ; Structural design ; Structural engineering ; Surface temperature ; Temperature distribution ; Temperature requirements ; Thermoelectric power generation ; Thermoelectricity</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Mingfeng Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</cites><orcidid>0009-0002-5092-1476 ; 0000-0003-3422-104X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3129229029/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3129229029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Castaldo, Paolo</contributor><contributor>Paolo Castaldo</contributor><creatorcontrib>Tang, Mingfeng</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ou, Yangqi</creatorcontrib><creatorcontrib>Tang, Ziqiao</creatorcontrib><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><title>International journal of energy research</title><description>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</description><subject>Arrays</subject><subject>Biomass burning</subject><subject>Configuration management</subject><subject>Efficiency</subject><subject>Electric power distribution</subject><subject>Electric power loss</subject><subject>Emissions</subject><subject>Exhaust emissions</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Genetic algorithms</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat recovery systems</subject><subject>Internal flow</subject><subject>Operating costs</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Production costs</subject><subject>Reconfiguration</subject><subject>Research methodology</subject><subject>Semiconductors</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Surface temperature</subject><subject>Temperature distribution</subject><subject>Temperature requirements</subject><subject>Thermoelectric power generation</subject><subject>Thermoelectricity</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkEFPwzAMhSMEEmNw4wdE4kqZkzRtc5wGDKQxENqk3aosdVmntRlJC9qJv06q7WTLfv6e_Ai5ZfDAmJQjDjwepRkHoeQZGTBQKmIsXp2TAYhERArS1SW58n4LEHYsHZC_MZ3bH9zRxQZdbXGHpnWVoVNs0Om2sg0dO6cP9BONbcrqqztNWxtGRWeQvlW-1q3Z0A_7i47OrPd02RShnduma6rSupousN73wM4hfax88Fh3PeeaXJR65_HmVIdk-fy0mLxEs_fp62Q8iwyT0EaFSDhXMilArGUWmyIpU0jjJJNYyizNZCZAaaULAIMqVeFobUqMOSaZZjIWQ3J35O6d_e7Qt_nWdq4JlrlgXAU4cBVU90eVceELh2W-d1Wt3SFnkPcR533E-Sli8Q8c3m9U</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tang, Mingfeng</creator><creator>Wang, Jun</creator><creator>Ou, Yangqi</creator><creator>Tang, Ziqiao</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0002-5092-1476</orcidid><orcidid>https://orcid.org/0000-0003-3422-104X</orcidid></search><sort><creationdate>20240101</creationdate><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><author>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Biomass burning</topic><topic>Configuration management</topic><topic>Efficiency</topic><topic>Electric power distribution</topic><topic>Electric power loss</topic><topic>Emissions</topic><topic>Exhaust emissions</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Genetic algorithms</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat recovery systems</topic><topic>Internal flow</topic><topic>Operating costs</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Production costs</topic><topic>Reconfiguration</topic><topic>Research methodology</topic><topic>Semiconductors</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Surface temperature</topic><topic>Temperature distribution</topic><topic>Temperature requirements</topic><topic>Thermoelectric power generation</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Mingfeng</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ou, Yangqi</creatorcontrib><creatorcontrib>Tang, Ziqiao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Mingfeng</au><au>Wang, Jun</au><au>Ou, Yangqi</au><au>Tang, Ziqiao</au><au>Castaldo, Paolo</au><au>Paolo Castaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/7820395</doi><orcidid>https://orcid.org/0009-0002-5092-1476</orcidid><orcidid>https://orcid.org/0000-0003-3422-104X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2024-01, Vol.2024 (1)
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_3129229029
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley-Blackwell Open Access Titles(OpenAccess)
subjects Arrays
Biomass burning
Configuration management
Efficiency
Electric power distribution
Electric power loss
Emissions
Exhaust emissions
Gas flow
Gases
Genetic algorithms
Heat
Heat exchange
Heat recovery systems
Internal flow
Operating costs
Optimization algorithms
Optimization techniques
Production costs
Reconfiguration
Research methodology
Semiconductors
Structural design
Structural engineering
Surface temperature
Temperature distribution
Temperature requirements
Thermoelectric power generation
Thermoelectricity
title A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Thermoelectric%20Generation%20Array%20Reconfiguration%20to%20Reduce%20Mismatch%20Power%20Loss%20Under%20Nonuniform%20Temperature%20Distribution&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Tang,%20Mingfeng&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/7820395&rft_dat=%3Cproquest_cross%3E3129229029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129229029&rft_id=info:pmid/&rfr_iscdi=true