Loading…
A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution
In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting...
Saved in:
Published in: | International journal of energy research 2024-01, Vol.2024 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Tang, Mingfeng Wang, Jun Ou, Yangqi Tang, Ziqiao |
description | In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations. |
doi_str_mv | 10.1155/2024/7820395 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129229029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129229029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</originalsourceid><addsrcrecordid>eNotkEFPwzAMhSMEEmNw4wdE4kqZkzRtc5wGDKQxENqk3aosdVmntRlJC9qJv06q7WTLfv6e_Ai5ZfDAmJQjDjwepRkHoeQZGTBQKmIsXp2TAYhERArS1SW58n4LEHYsHZC_MZ3bH9zRxQZdbXGHpnWVoVNs0Om2sg0dO6cP9BONbcrqqztNWxtGRWeQvlW-1q3Z0A_7i47OrPd02RShnduma6rSupousN73wM4hfax88Fh3PeeaXJR65_HmVIdk-fy0mLxEs_fp62Q8iwyT0EaFSDhXMilArGUWmyIpU0jjJJNYyizNZCZAaaULAIMqVeFobUqMOSaZZjIWQ3J35O6d_e7Qt_nWdq4JlrlgXAU4cBVU90eVceELh2W-d1Wt3SFnkPcR533E-Sli8Q8c3m9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129229029</pqid></control><display><type>article</type><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao</creator><contributor>Castaldo, Paolo ; Paolo Castaldo</contributor><creatorcontrib>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao ; Castaldo, Paolo ; Paolo Castaldo</creatorcontrib><description>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/7820395</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Arrays ; Biomass burning ; Configuration management ; Efficiency ; Electric power distribution ; Electric power loss ; Emissions ; Exhaust emissions ; Gas flow ; Gases ; Genetic algorithms ; Heat ; Heat exchange ; Heat recovery systems ; Internal flow ; Operating costs ; Optimization algorithms ; Optimization techniques ; Production costs ; Reconfiguration ; Research methodology ; Semiconductors ; Structural design ; Structural engineering ; Surface temperature ; Temperature distribution ; Temperature requirements ; Thermoelectric power generation ; Thermoelectricity</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Mingfeng Tang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</cites><orcidid>0009-0002-5092-1476 ; 0000-0003-3422-104X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3129229029/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3129229029?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Castaldo, Paolo</contributor><contributor>Paolo Castaldo</contributor><creatorcontrib>Tang, Mingfeng</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ou, Yangqi</creatorcontrib><creatorcontrib>Tang, Ziqiao</creatorcontrib><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><title>International journal of energy research</title><description>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</description><subject>Arrays</subject><subject>Biomass burning</subject><subject>Configuration management</subject><subject>Efficiency</subject><subject>Electric power distribution</subject><subject>Electric power loss</subject><subject>Emissions</subject><subject>Exhaust emissions</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Genetic algorithms</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat recovery systems</subject><subject>Internal flow</subject><subject>Operating costs</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Production costs</subject><subject>Reconfiguration</subject><subject>Research methodology</subject><subject>Semiconductors</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Surface temperature</subject><subject>Temperature distribution</subject><subject>Temperature requirements</subject><subject>Thermoelectric power generation</subject><subject>Thermoelectricity</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkEFPwzAMhSMEEmNw4wdE4kqZkzRtc5wGDKQxENqk3aosdVmntRlJC9qJv06q7WTLfv6e_Ai5ZfDAmJQjDjwepRkHoeQZGTBQKmIsXp2TAYhERArS1SW58n4LEHYsHZC_MZ3bH9zRxQZdbXGHpnWVoVNs0Om2sg0dO6cP9BONbcrqqztNWxtGRWeQvlW-1q3Z0A_7i47OrPd02RShnduma6rSupousN73wM4hfax88Fh3PeeaXJR65_HmVIdk-fy0mLxEs_fp62Q8iwyT0EaFSDhXMilArGUWmyIpU0jjJJNYyizNZCZAaaULAIMqVeFobUqMOSaZZjIWQ3J35O6d_e7Qt_nWdq4JlrlgXAU4cBVU90eVceELh2W-d1Wt3SFnkPcR533E-Sli8Q8c3m9U</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tang, Mingfeng</creator><creator>Wang, Jun</creator><creator>Ou, Yangqi</creator><creator>Tang, Ziqiao</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0009-0002-5092-1476</orcidid><orcidid>https://orcid.org/0000-0003-3422-104X</orcidid></search><sort><creationdate>20240101</creationdate><title>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</title><author>Tang, Mingfeng ; Wang, Jun ; Ou, Yangqi ; Tang, Ziqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Biomass burning</topic><topic>Configuration management</topic><topic>Efficiency</topic><topic>Electric power distribution</topic><topic>Electric power loss</topic><topic>Emissions</topic><topic>Exhaust emissions</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Genetic algorithms</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat recovery systems</topic><topic>Internal flow</topic><topic>Operating costs</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Production costs</topic><topic>Reconfiguration</topic><topic>Research methodology</topic><topic>Semiconductors</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Surface temperature</topic><topic>Temperature distribution</topic><topic>Temperature requirements</topic><topic>Thermoelectric power generation</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Mingfeng</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Ou, Yangqi</creatorcontrib><creatorcontrib>Tang, Ziqiao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Mingfeng</au><au>Wang, Jun</au><au>Ou, Yangqi</au><au>Tang, Ziqiao</au><au>Castaldo, Paolo</au><au>Paolo Castaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/7820395</doi><orcidid>https://orcid.org/0009-0002-5092-1476</orcidid><orcidid>https://orcid.org/0000-0003-3422-104X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-01, Vol.2024 (1) |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_3129229029 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Arrays Biomass burning Configuration management Efficiency Electric power distribution Electric power loss Emissions Exhaust emissions Gas flow Gases Genetic algorithms Heat Heat exchange Heat recovery systems Internal flow Operating costs Optimization algorithms Optimization techniques Production costs Reconfiguration Research methodology Semiconductors Structural design Structural engineering Surface temperature Temperature distribution Temperature requirements Thermoelectric power generation Thermoelectricity |
title | A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Thermoelectric%20Generation%20Array%20Reconfiguration%20to%20Reduce%20Mismatch%20Power%20Loss%20Under%20Nonuniform%20Temperature%20Distribution&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Tang,%20Mingfeng&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/7820395&rft_dat=%3Cproquest_cross%3E3129229029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c150t-d3622956d03b584cd6f7074685ef587858309a9ad00ce979150bcfe42e68a1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129229029&rft_id=info:pmid/&rfr_iscdi=true |