Loading…

Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride

Semi‐biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such bio...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-11, Vol.136 (48), p.n/a
Main Authors: Kalathil, Shafeer, Rahaman, Motiar, Lam, Erwin, Augustin, Teresa L., Greer, Heather F., Reisner, Erwin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1572-e04b4fc09d10f83c291103915843c828a6d23a8cb4743124b3c377e5a7b0e0243
container_end_page n/a
container_issue 48
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Kalathil, Shafeer
Rahaman, Motiar
Lam, Erwin
Augustin, Teresa L.
Greer, Heather F.
Reisner, Erwin
description Semi‐biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c‐type cytochromes (c‐Cyts) and electrically conductive protein filaments (e‐PFs) made of polymerized c‐Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri‐KN400 co‐culture with a synthetic photosensitizer, carbon nitride, demonstrates that c‐Cyts and e‐PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long‐term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi‐biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions. Microbial ecosystem engineering enables efficient solar‐driven methanogenesis over a biohybrid photocatalyst. The syntrophic coculture of Methanosarcina barkeri (M. barkeri) with the electron transport specialist Geobacter sulfurreducens KN400 (KN400) over carbon nitride produced a semi‐biological photocatalyst for the sunlight‐driven methane synthesis from carbon dioxide.
doi_str_mv 10.1002/ange.202409192
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129307468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129307468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1572-e04b4fc09d10f83c291103915843c828a6d23a8cb4743124b3c377e5a7b0e0243</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMkdiTrn-SR2PVQkFqS0DIEbLcZ3UVWoXOwV14xF4Rp6EVEUwMp3lO_fqfAhdYhhgAHKtXG0GBAgDgQU5Qj2cEZxSnvFj1ANgLM0JE6foLMYVAAwJFz308ugbFb4-Pm-CfTMumZl2qZyvjTPRxqRdBr-tl8nM6uBLq5qk0D7uYmvWSeFq64wJ1tWJd8lYhbKLuW2DXZhzdFKpJpqLn-yj59viaXyXTh8m9-PRNNU44yQ1wEpWaRALDFVONREYAxU4yxnVOcnVcEGoynXJOKOYsJJqyrnJFC_BdFNpH10d7m6Cf92a2MqV3wbXvZQdLyhwNsw7anCguhUxBlPJTbBrFXYSg9zLk3t58ldeVxCHwrttzO4fWo7mk-Kv-w0dt3Ov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129307468</pqid></control><display><type>article</type><title>Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kalathil, Shafeer ; Rahaman, Motiar ; Lam, Erwin ; Augustin, Teresa L. ; Greer, Heather F. ; Reisner, Erwin</creator><creatorcontrib>Kalathil, Shafeer ; Rahaman, Motiar ; Lam, Erwin ; Augustin, Teresa L. ; Greer, Heather F. ; Reisner, Erwin</creatorcontrib><description>Semi‐biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c‐type cytochromes (c‐Cyts) and electrically conductive protein filaments (e‐PFs) made of polymerized c‐Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri‐KN400 co‐culture with a synthetic photosensitizer, carbon nitride, demonstrates that c‐Cyts and e‐PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long‐term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi‐biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions. Microbial ecosystem engineering enables efficient solar‐driven methanogenesis over a biohybrid photocatalyst. The syntrophic coculture of Methanosarcina barkeri (M. barkeri) with the electron transport specialist Geobacter sulfurreducens KN400 (KN400) over carbon nitride produced a semi‐biological photocatalyst for the sunlight‐driven methane synthesis from carbon dioxide.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202409192</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bioengineering ; Biohybrids ; Carbon ; Carbon dioxide ; Carbon nitride ; Chemical reactions ; Conductive protein filaments ; Electron transfer ; Electron transport ; Filaments ; Methanogenesis ; Microorganisms ; Photosynthesis ; Solar fuels ; Sustainable production</subject><ispartof>Angewandte Chemie, 2024-11, Vol.136 (48), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1572-e04b4fc09d10f83c291103915843c828a6d23a8cb4743124b3c377e5a7b0e0243</cites><orcidid>0000-0002-7781-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kalathil, Shafeer</creatorcontrib><creatorcontrib>Rahaman, Motiar</creatorcontrib><creatorcontrib>Lam, Erwin</creatorcontrib><creatorcontrib>Augustin, Teresa L.</creatorcontrib><creatorcontrib>Greer, Heather F.</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><title>Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride</title><title>Angewandte Chemie</title><description>Semi‐biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c‐type cytochromes (c‐Cyts) and electrically conductive protein filaments (e‐PFs) made of polymerized c‐Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri‐KN400 co‐culture with a synthetic photosensitizer, carbon nitride, demonstrates that c‐Cyts and e‐PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long‐term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi‐biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions. Microbial ecosystem engineering enables efficient solar‐driven methanogenesis over a biohybrid photocatalyst. The syntrophic coculture of Methanosarcina barkeri (M. barkeri) with the electron transport specialist Geobacter sulfurreducens KN400 (KN400) over carbon nitride produced a semi‐biological photocatalyst for the sunlight‐driven methane synthesis from carbon dioxide.</description><subject>Bioengineering</subject><subject>Biohybrids</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nitride</subject><subject>Chemical reactions</subject><subject>Conductive protein filaments</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Filaments</subject><subject>Methanogenesis</subject><subject>Microorganisms</subject><subject>Photosynthesis</subject><subject>Solar fuels</subject><subject>Sustainable production</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMkdiTrn-SR2PVQkFqS0DIEbLcZ3UVWoXOwV14xF4Rp6EVEUwMp3lO_fqfAhdYhhgAHKtXG0GBAgDgQU5Qj2cEZxSnvFj1ANgLM0JE6foLMYVAAwJFz308ugbFb4-Pm-CfTMumZl2qZyvjTPRxqRdBr-tl8nM6uBLq5qk0D7uYmvWSeFq64wJ1tWJd8lYhbKLuW2DXZhzdFKpJpqLn-yj59viaXyXTh8m9-PRNNU44yQ1wEpWaRALDFVONREYAxU4yxnVOcnVcEGoynXJOKOYsJJqyrnJFC_BdFNpH10d7m6Cf92a2MqV3wbXvZQdLyhwNsw7anCguhUxBlPJTbBrFXYSg9zLk3t58ldeVxCHwrttzO4fWo7mk-Kv-w0dt3Ov</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Kalathil, Shafeer</creator><creator>Rahaman, Motiar</creator><creator>Lam, Erwin</creator><creator>Augustin, Teresa L.</creator><creator>Greer, Heather F.</creator><creator>Reisner, Erwin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid></search><sort><creationdate>20241125</creationdate><title>Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride</title><author>Kalathil, Shafeer ; Rahaman, Motiar ; Lam, Erwin ; Augustin, Teresa L. ; Greer, Heather F. ; Reisner, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1572-e04b4fc09d10f83c291103915843c828a6d23a8cb4743124b3c377e5a7b0e0243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioengineering</topic><topic>Biohybrids</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nitride</topic><topic>Chemical reactions</topic><topic>Conductive protein filaments</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Filaments</topic><topic>Methanogenesis</topic><topic>Microorganisms</topic><topic>Photosynthesis</topic><topic>Solar fuels</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalathil, Shafeer</creatorcontrib><creatorcontrib>Rahaman, Motiar</creatorcontrib><creatorcontrib>Lam, Erwin</creatorcontrib><creatorcontrib>Augustin, Teresa L.</creatorcontrib><creatorcontrib>Greer, Heather F.</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalathil, Shafeer</au><au>Rahaman, Motiar</au><au>Lam, Erwin</au><au>Augustin, Teresa L.</au><au>Greer, Heather F.</au><au>Reisner, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-25</date><risdate>2024</risdate><volume>136</volume><issue>48</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Semi‐biological photosynthesis combines synthetic photosensitizers with microbial catalysts to produce sustainable fuels and chemicals from CO2. However, the inefficient transfer of photoexcited electrons to microbes leads to limited CO2 utilization, restricting the catalytic performance of such biohybrid assemblies. Here, we introduce a biological engineering solution to address the inherently sluggish electron uptake mechanism of a methanogen, Methanosarcina barkeri (M. barkeri), by coculturing it with an electron transport specialist, Geobacter sulfurreducens KN400 (KN400), an adapted strain rich with multiheme c‐type cytochromes (c‐Cyts) and electrically conductive protein filaments (e‐PFs) made of polymerized c‐Cyts with enhanced capacity for extracellular electron transfer (EET). Integration of this M. barkeri‐KN400 co‐culture with a synthetic photosensitizer, carbon nitride, demonstrates that c‐Cyts and e‐PFs, emanating from live KN400, transport photoexcited electrons efficiently from the carbon nitride to M. barkeri for methanogenesis with remarkable long‐term stability and selectivity. The demonstrated cooperative interaction between two microbes via direct interspecies electron transfer (DIET) and the photosensitizer to assemble a semi‐biological photocatalyst introduces an ecosystem engineering strategy in solar chemistry to drive sustainable chemical reactions. Microbial ecosystem engineering enables efficient solar‐driven methanogenesis over a biohybrid photocatalyst. The syntrophic coculture of Methanosarcina barkeri (M. barkeri) with the electron transport specialist Geobacter sulfurreducens KN400 (KN400) over carbon nitride produced a semi‐biological photocatalyst for the sunlight‐driven methane synthesis from carbon dioxide.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202409192</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-11, Vol.136 (48), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3129307468
source Wiley-Blackwell Read & Publish Collection
subjects Bioengineering
Biohybrids
Carbon
Carbon dioxide
Carbon nitride
Chemical reactions
Conductive protein filaments
Electron transfer
Electron transport
Filaments
Methanogenesis
Microorganisms
Photosynthesis
Solar fuels
Sustainable production
title Solar‐Driven Methanogenesis through Microbial Ecosystem Engineering on Carbon Nitride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%E2%80%90Driven%20Methanogenesis%20through%20Microbial%20Ecosystem%20Engineering%20on%20Carbon%20Nitride&rft.jtitle=Angewandte%20Chemie&rft.au=Kalathil,%20Shafeer&rft.date=2024-11-25&rft.volume=136&rft.issue=48&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202409192&rft_dat=%3Cproquest_cross%3E3129307468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1572-e04b4fc09d10f83c291103915843c828a6d23a8cb4743124b3c377e5a7b0e0243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129307468&rft_id=info:pmid/&rfr_iscdi=true