Loading…
THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET
We write $\mathcal {S}_n(A)$ for the set of permutations of a set A with n non-fixed points and $\mathrm {{seq}}^{1-1}_n(A)$ for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than $1$ . With the Axiom of Choice, $|\mathcal {S}_n(A)|$ and $|\mathrm...
Saved in:
Published in: | The Journal of symbolic logic 2024-09, Vol.89 (3), p.1067-1076 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3 |
container_end_page | 1076 |
container_issue | 3 |
container_start_page | 1067 |
container_title | The Journal of symbolic logic |
container_volume | 89 |
creator | NUNTASRI, JUKKRID VEJJAJIVA, PIMPEN |
description | We write
$\mathcal {S}_n(A)$
for the set of permutations of a set A with n non-fixed points and
$\mathrm {{seq}}^{1-1}_n(A)$
for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than
$1$
. With the Axiom of Choice,
$|\mathcal {S}_n(A)|$
and
$|\mathrm {{seq}}^{1-1}_n(A)|$
are equal for all infinite sets A. Among our results, we show, in ZF, that
$|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$
for any infinite set A if
${\mathrm {AC}}_{\leq n}$
is assumed and this assumption cannot be removed. In the other direction, we show that
$|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A and the subscript
$n+1$
cannot be reduced to n. Moreover, we also show that “
$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A” is not provable in ZF. |
doi_str_mv | 10.1017/jsl.2022.57 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129422784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jsl_2022_57</cupid><sourcerecordid>3129422784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3</originalsourceid><addsrcrecordid>eNptkE1PAjEQhhujiYie_ANNPJrFttvttscNdGET7IKU6K3ZLV0D4cstHPz3FiHx4mkmM8-8kzwAPGLUwwinLyu_7hFESC9Jr0AHCxpHCefsGnRQmEaUY3IL7rxfIYQSQXkHTPVIwol8e53rTBelmsH3Qo_gFqpSRXnxIQdwUhZKz2CmBvAEz-R0LlVfXsixVMPfgzKHWVjqe3DTVGvvHi61C-a51P1RNC6HRT8bR5YQcYga7OjCMmZr6hpcoxQJh0MjKGU1s3Eq4ipxJGVccIuIsIgxUouE1SThltq4C57Ouft293V0_mBWu2O7DS9NjImghKScBur5TNl2533rGrNvl5uq_TYYmZMzE5yZkzOTpIGOLnS1qdvl4tP9hf7H_wB6zmV6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129422784</pqid></control><display><type>article</type><title>THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET</title><source>Cambridge University Press</source><creator>NUNTASRI, JUKKRID ; VEJJAJIVA, PIMPEN</creator><creatorcontrib>NUNTASRI, JUKKRID ; VEJJAJIVA, PIMPEN</creatorcontrib><description>We write
$\mathcal {S}_n(A)$
for the set of permutations of a set A with n non-fixed points and
$\mathrm {{seq}}^{1-1}_n(A)$
for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than
$1$
. With the Axiom of Choice,
$|\mathcal {S}_n(A)|$
and
$|\mathrm {{seq}}^{1-1}_n(A)|$
are equal for all infinite sets A. Among our results, we show, in ZF, that
$|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$
for any infinite set A if
${\mathrm {AC}}_{\leq n}$
is assumed and this assumption cannot be removed. In the other direction, we show that
$|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A and the subscript
$n+1$
cannot be reduced to n. Moreover, we also show that “
$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A” is not provable in ZF.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2022.57</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Codes ; Theorems</subject><ispartof>The Journal of symbolic logic, 2024-09, Vol.89 (3), p.1067-1076</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3</citedby><cites>FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022481222000573/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,72730</link.rule.ids></links><search><creatorcontrib>NUNTASRI, JUKKRID</creatorcontrib><creatorcontrib>VEJJAJIVA, PIMPEN</creatorcontrib><title>THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET</title><title>The Journal of symbolic logic</title><addtitle>J. symb. log</addtitle><description>We write
$\mathcal {S}_n(A)$
for the set of permutations of a set A with n non-fixed points and
$\mathrm {{seq}}^{1-1}_n(A)$
for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than
$1$
. With the Axiom of Choice,
$|\mathcal {S}_n(A)|$
and
$|\mathrm {{seq}}^{1-1}_n(A)|$
are equal for all infinite sets A. Among our results, we show, in ZF, that
$|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$
for any infinite set A if
${\mathrm {AC}}_{\leq n}$
is assumed and this assumption cannot be removed. In the other direction, we show that
$|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A and the subscript
$n+1$
cannot be reduced to n. Moreover, we also show that “
$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A” is not provable in ZF.</description><subject>Codes</subject><subject>Theorems</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1PAjEQhhujiYie_ANNPJrFttvttscNdGET7IKU6K3ZLV0D4cstHPz3FiHx4mkmM8-8kzwAPGLUwwinLyu_7hFESC9Jr0AHCxpHCefsGnRQmEaUY3IL7rxfIYQSQXkHTPVIwol8e53rTBelmsH3Qo_gFqpSRXnxIQdwUhZKz2CmBvAEz-R0LlVfXsixVMPfgzKHWVjqe3DTVGvvHi61C-a51P1RNC6HRT8bR5YQcYga7OjCMmZr6hpcoxQJh0MjKGU1s3Eq4ipxJGVccIuIsIgxUouE1SThltq4C57Ouft293V0_mBWu2O7DS9NjImghKScBur5TNl2533rGrNvl5uq_TYYmZMzE5yZkzOTpIGOLnS1qdvl4tP9hf7H_wB6zmV6</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>NUNTASRI, JUKKRID</creator><creator>VEJJAJIVA, PIMPEN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET</title><author>NUNTASRI, JUKKRID ; VEJJAJIVA, PIMPEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NUNTASRI, JUKKRID</creatorcontrib><creatorcontrib>VEJJAJIVA, PIMPEN</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NUNTASRI, JUKKRID</au><au>VEJJAJIVA, PIMPEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET</atitle><jtitle>The Journal of symbolic logic</jtitle><addtitle>J. symb. log</addtitle><date>2024-09</date><risdate>2024</risdate><volume>89</volume><issue>3</issue><spage>1067</spage><epage>1076</epage><pages>1067-1076</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We write
$\mathcal {S}_n(A)$
for the set of permutations of a set A with n non-fixed points and
$\mathrm {{seq}}^{1-1}_n(A)$
for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than
$1$
. With the Axiom of Choice,
$|\mathcal {S}_n(A)|$
and
$|\mathrm {{seq}}^{1-1}_n(A)|$
are equal for all infinite sets A. Among our results, we show, in ZF, that
$|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$
for any infinite set A if
${\mathrm {AC}}_{\leq n}$
is assumed and this assumption cannot be removed. In the other direction, we show that
$|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A and the subscript
$n+1$
cannot be reduced to n. Moreover, we also show that “
$|\mathcal {S}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$
for any infinite set A” is not provable in ZF.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2022.57</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2024-09, Vol.89 (3), p.1067-1076 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_proquest_journals_3129422784 |
source | Cambridge University Press |
subjects | Codes Theorems |
title | THE PERMUTATIONS WITH n NON-FIXED POINTS AND THE SEQUENCES WITH LENGTH n OF A SET |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20PERMUTATIONS%20WITH%20n%20NON-FIXED%20POINTS%20AND%20THE%20SEQUENCES%20WITH%20LENGTH%20n%20OF%20A%20SET&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=NUNTASRI,%20JUKKRID&rft.date=2024-09&rft.volume=89&rft.issue=3&rft.spage=1067&rft.epage=1076&rft.pages=1067-1076&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2022.57&rft_dat=%3Cproquest_cross%3E3129422784%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c229t-f1e4dc66cb4ef1b0709e1f1b9446b6c3793a5e276898c029c0662b956b258c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129422784&rft_id=info:pmid/&rft_cupid=10_1017_jsl_2022_57&rfr_iscdi=true |