Loading…

2D Theoretically Twistable Material Database

The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Jiang, Yi, Petralanda, Urko, Skorupskii, Grigorii, Xu, Qiaoling, Pi, Hanqi, Dumitru Călugăru, Hu, Haoyu, Xie, Jiaze, Rose Albu Mustaf, Höhn, Peter, Haase, Vicky, Vergniory, Maia G, Claassen, Martin, Elcoro, Luis, Regnault, Nicolas, Shan, Jie, Mak, Kin Fai, Efetov, Dmitri K, Morosan, Emilia, Kennes, Dante M, Rubio, Angel, Lede Xian, Felser, Claudia, Schoop, Leslie M, Bernevig, B Andrei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Yi
Petralanda, Urko
Skorupskii, Grigorii
Xu, Qiaoling
Pi, Hanqi
Dumitru Călugăru
Hu, Haoyu
Xie, Jiaze
Rose Albu Mustaf
Höhn, Peter
Haase, Vicky
Vergniory, Maia G
Claassen, Martin
Elcoro, Luis
Regnault, Nicolas
Shan, Jie
Mak, Kin Fai
Efetov, Dmitri K
Morosan, Emilia
Kennes, Dante M
Rubio, Angel
Lede Xian
Felser, Claudia
Schoop, Leslie M
Bernevig, B Andrei
description The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3129862466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129862466</sourcerecordid><originalsourceid>FETCH-proquest_journals_31298624663</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMXJRCMlIzS9KLclMTszJqVQIKc8sLklMyklV8E0sSS3KTMxRcEkECiQWp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoZGlhZmRiZmZMXGqAFruMVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129862466</pqid></control><display><type>article</type><title>2D Theoretically Twistable Material Database</title><source>Publicly Available Content Database</source><creator>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</creator><creatorcontrib>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</creatorcontrib><description>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Band theory ; Banded structure ; Bilayers ; Continuum modeling ; Crystal growth ; Crystal lattices ; Electron spin ; Graphene ; Heterostructures ; Insulators ; Materials selection ; Multilayers ; Superlattices ; Topology ; Transition metal compounds ; Two dimensional analysis ; Two dimensional materials</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3129862466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Petralanda, Urko</creatorcontrib><creatorcontrib>Skorupskii, Grigorii</creatorcontrib><creatorcontrib>Xu, Qiaoling</creatorcontrib><creatorcontrib>Pi, Hanqi</creatorcontrib><creatorcontrib>Dumitru Călugăru</creatorcontrib><creatorcontrib>Hu, Haoyu</creatorcontrib><creatorcontrib>Xie, Jiaze</creatorcontrib><creatorcontrib>Rose Albu Mustaf</creatorcontrib><creatorcontrib>Höhn, Peter</creatorcontrib><creatorcontrib>Haase, Vicky</creatorcontrib><creatorcontrib>Vergniory, Maia G</creatorcontrib><creatorcontrib>Claassen, Martin</creatorcontrib><creatorcontrib>Elcoro, Luis</creatorcontrib><creatorcontrib>Regnault, Nicolas</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Efetov, Dmitri K</creatorcontrib><creatorcontrib>Morosan, Emilia</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><creatorcontrib>Lede Xian</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><title>2D Theoretically Twistable Material Database</title><title>arXiv.org</title><description>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</description><subject>Algorithms</subject><subject>Band theory</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Continuum modeling</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Electron spin</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Insulators</subject><subject>Materials selection</subject><subject>Multilayers</subject><subject>Superlattices</subject><subject>Topology</subject><subject>Transition metal compounds</subject><subject>Two dimensional analysis</subject><subject>Two dimensional materials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMXJRCMlIzS9KLclMTszJqVQIKc8sLklMyklV8E0sSS3KTMxRcEkECiQWp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoZGlhZmRiZmZMXGqAFruMVE</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Jiang, Yi</creator><creator>Petralanda, Urko</creator><creator>Skorupskii, Grigorii</creator><creator>Xu, Qiaoling</creator><creator>Pi, Hanqi</creator><creator>Dumitru Călugăru</creator><creator>Hu, Haoyu</creator><creator>Xie, Jiaze</creator><creator>Rose Albu Mustaf</creator><creator>Höhn, Peter</creator><creator>Haase, Vicky</creator><creator>Vergniory, Maia G</creator><creator>Claassen, Martin</creator><creator>Elcoro, Luis</creator><creator>Regnault, Nicolas</creator><creator>Shan, Jie</creator><creator>Mak, Kin Fai</creator><creator>Efetov, Dmitri K</creator><creator>Morosan, Emilia</creator><creator>Kennes, Dante M</creator><creator>Rubio, Angel</creator><creator>Lede Xian</creator><creator>Felser, Claudia</creator><creator>Schoop, Leslie M</creator><creator>Bernevig, B Andrei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241114</creationdate><title>2D Theoretically Twistable Material Database</title><author>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31298624663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Band theory</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Continuum modeling</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Electron spin</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Insulators</topic><topic>Materials selection</topic><topic>Multilayers</topic><topic>Superlattices</topic><topic>Topology</topic><topic>Transition metal compounds</topic><topic>Two dimensional analysis</topic><topic>Two dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Petralanda, Urko</creatorcontrib><creatorcontrib>Skorupskii, Grigorii</creatorcontrib><creatorcontrib>Xu, Qiaoling</creatorcontrib><creatorcontrib>Pi, Hanqi</creatorcontrib><creatorcontrib>Dumitru Călugăru</creatorcontrib><creatorcontrib>Hu, Haoyu</creatorcontrib><creatorcontrib>Xie, Jiaze</creatorcontrib><creatorcontrib>Rose Albu Mustaf</creatorcontrib><creatorcontrib>Höhn, Peter</creatorcontrib><creatorcontrib>Haase, Vicky</creatorcontrib><creatorcontrib>Vergniory, Maia G</creatorcontrib><creatorcontrib>Claassen, Martin</creatorcontrib><creatorcontrib>Elcoro, Luis</creatorcontrib><creatorcontrib>Regnault, Nicolas</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Efetov, Dmitri K</creatorcontrib><creatorcontrib>Morosan, Emilia</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><creatorcontrib>Lede Xian</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yi</au><au>Petralanda, Urko</au><au>Skorupskii, Grigorii</au><au>Xu, Qiaoling</au><au>Pi, Hanqi</au><au>Dumitru Călugăru</au><au>Hu, Haoyu</au><au>Xie, Jiaze</au><au>Rose Albu Mustaf</au><au>Höhn, Peter</au><au>Haase, Vicky</au><au>Vergniory, Maia G</au><au>Claassen, Martin</au><au>Elcoro, Luis</au><au>Regnault, Nicolas</au><au>Shan, Jie</au><au>Mak, Kin Fai</au><au>Efetov, Dmitri K</au><au>Morosan, Emilia</au><au>Kennes, Dante M</au><au>Rubio, Angel</au><au>Lede Xian</au><au>Felser, Claudia</au><au>Schoop, Leslie M</au><au>Bernevig, B Andrei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>2D Theoretically Twistable Material Database</atitle><jtitle>arXiv.org</jtitle><date>2024-11-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3129862466
source Publicly Available Content Database
subjects Algorithms
Band theory
Banded structure
Bilayers
Continuum modeling
Crystal growth
Crystal lattices
Electron spin
Graphene
Heterostructures
Insulators
Materials selection
Multilayers
Superlattices
Topology
Transition metal compounds
Two dimensional analysis
Two dimensional materials
title 2D Theoretically Twistable Material Database
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=2D%20Theoretically%20Twistable%20Material%20Database&rft.jtitle=arXiv.org&rft.au=Jiang,%20Yi&rft.date=2024-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3129862466%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31298624663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129862466&rft_id=info:pmid/&rfr_iscdi=true