Loading…
2D Theoretically Twistable Material Database
The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jiang, Yi Petralanda, Urko Skorupskii, Grigorii Xu, Qiaoling Pi, Hanqi Dumitru Călugăru Hu, Haoyu Xie, Jiaze Rose Albu Mustaf Höhn, Peter Haase, Vicky Vergniory, Maia G Claassen, Martin Elcoro, Luis Regnault, Nicolas Shan, Jie Mak, Kin Fai Efetov, Dmitri K Morosan, Emilia Kennes, Dante M Rubio, Angel Lede Xian Felser, Claudia Schoop, Leslie M Bernevig, B Andrei |
description | The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3129862466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129862466</sourcerecordid><originalsourceid>FETCH-proquest_journals_31298624663</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMXJRCMlIzS9KLclMTszJqVQIKc8sLklMyklV8E0sSS3KTMxRcEkECiQWp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoZGlhZmRiZmZMXGqAFruMVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129862466</pqid></control><display><type>article</type><title>2D Theoretically Twistable Material Database</title><source>Publicly Available Content Database</source><creator>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</creator><creatorcontrib>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</creatorcontrib><description>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Band theory ; Banded structure ; Bilayers ; Continuum modeling ; Crystal growth ; Crystal lattices ; Electron spin ; Graphene ; Heterostructures ; Insulators ; Materials selection ; Multilayers ; Superlattices ; Topology ; Transition metal compounds ; Two dimensional analysis ; Two dimensional materials</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3129862466?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Petralanda, Urko</creatorcontrib><creatorcontrib>Skorupskii, Grigorii</creatorcontrib><creatorcontrib>Xu, Qiaoling</creatorcontrib><creatorcontrib>Pi, Hanqi</creatorcontrib><creatorcontrib>Dumitru Călugăru</creatorcontrib><creatorcontrib>Hu, Haoyu</creatorcontrib><creatorcontrib>Xie, Jiaze</creatorcontrib><creatorcontrib>Rose Albu Mustaf</creatorcontrib><creatorcontrib>Höhn, Peter</creatorcontrib><creatorcontrib>Haase, Vicky</creatorcontrib><creatorcontrib>Vergniory, Maia G</creatorcontrib><creatorcontrib>Claassen, Martin</creatorcontrib><creatorcontrib>Elcoro, Luis</creatorcontrib><creatorcontrib>Regnault, Nicolas</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Efetov, Dmitri K</creatorcontrib><creatorcontrib>Morosan, Emilia</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><creatorcontrib>Lede Xian</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><title>2D Theoretically Twistable Material Database</title><title>arXiv.org</title><description>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</description><subject>Algorithms</subject><subject>Band theory</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Continuum modeling</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Electron spin</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Insulators</subject><subject>Materials selection</subject><subject>Multilayers</subject><subject>Superlattices</subject><subject>Topology</subject><subject>Transition metal compounds</subject><subject>Two dimensional analysis</subject><subject>Two dimensional materials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQMXJRCMlIzS9KLclMTszJqVQIKc8sLklMyklV8E0sSS3KTMxRcEkECiQWp_IwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoZGlhZmRiZmZMXGqAFruMVE</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Jiang, Yi</creator><creator>Petralanda, Urko</creator><creator>Skorupskii, Grigorii</creator><creator>Xu, Qiaoling</creator><creator>Pi, Hanqi</creator><creator>Dumitru Călugăru</creator><creator>Hu, Haoyu</creator><creator>Xie, Jiaze</creator><creator>Rose Albu Mustaf</creator><creator>Höhn, Peter</creator><creator>Haase, Vicky</creator><creator>Vergniory, Maia G</creator><creator>Claassen, Martin</creator><creator>Elcoro, Luis</creator><creator>Regnault, Nicolas</creator><creator>Shan, Jie</creator><creator>Mak, Kin Fai</creator><creator>Efetov, Dmitri K</creator><creator>Morosan, Emilia</creator><creator>Kennes, Dante M</creator><creator>Rubio, Angel</creator><creator>Lede Xian</creator><creator>Felser, Claudia</creator><creator>Schoop, Leslie M</creator><creator>Bernevig, B Andrei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241114</creationdate><title>2D Theoretically Twistable Material Database</title><author>Jiang, Yi ; Petralanda, Urko ; Skorupskii, Grigorii ; Xu, Qiaoling ; Pi, Hanqi ; Dumitru Călugăru ; Hu, Haoyu ; Xie, Jiaze ; Rose Albu Mustaf ; Höhn, Peter ; Haase, Vicky ; Vergniory, Maia G ; Claassen, Martin ; Elcoro, Luis ; Regnault, Nicolas ; Shan, Jie ; Mak, Kin Fai ; Efetov, Dmitri K ; Morosan, Emilia ; Kennes, Dante M ; Rubio, Angel ; Lede Xian ; Felser, Claudia ; Schoop, Leslie M ; Bernevig, B Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31298624663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Band theory</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Continuum modeling</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Electron spin</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Insulators</topic><topic>Materials selection</topic><topic>Multilayers</topic><topic>Superlattices</topic><topic>Topology</topic><topic>Transition metal compounds</topic><topic>Two dimensional analysis</topic><topic>Two dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yi</creatorcontrib><creatorcontrib>Petralanda, Urko</creatorcontrib><creatorcontrib>Skorupskii, Grigorii</creatorcontrib><creatorcontrib>Xu, Qiaoling</creatorcontrib><creatorcontrib>Pi, Hanqi</creatorcontrib><creatorcontrib>Dumitru Călugăru</creatorcontrib><creatorcontrib>Hu, Haoyu</creatorcontrib><creatorcontrib>Xie, Jiaze</creatorcontrib><creatorcontrib>Rose Albu Mustaf</creatorcontrib><creatorcontrib>Höhn, Peter</creatorcontrib><creatorcontrib>Haase, Vicky</creatorcontrib><creatorcontrib>Vergniory, Maia G</creatorcontrib><creatorcontrib>Claassen, Martin</creatorcontrib><creatorcontrib>Elcoro, Luis</creatorcontrib><creatorcontrib>Regnault, Nicolas</creatorcontrib><creatorcontrib>Shan, Jie</creatorcontrib><creatorcontrib>Mak, Kin Fai</creatorcontrib><creatorcontrib>Efetov, Dmitri K</creatorcontrib><creatorcontrib>Morosan, Emilia</creatorcontrib><creatorcontrib>Kennes, Dante M</creatorcontrib><creatorcontrib>Rubio, Angel</creatorcontrib><creatorcontrib>Lede Xian</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Schoop, Leslie M</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yi</au><au>Petralanda, Urko</au><au>Skorupskii, Grigorii</au><au>Xu, Qiaoling</au><au>Pi, Hanqi</au><au>Dumitru Călugăru</au><au>Hu, Haoyu</au><au>Xie, Jiaze</au><au>Rose Albu Mustaf</au><au>Höhn, Peter</au><au>Haase, Vicky</au><au>Vergniory, Maia G</au><au>Claassen, Martin</au><au>Elcoro, Luis</au><au>Regnault, Nicolas</au><au>Shan, Jie</au><au>Mak, Kin Fai</au><au>Efetov, Dmitri K</au><au>Morosan, Emilia</au><au>Kennes, Dante M</au><au>Rubio, Angel</au><au>Lede Xian</au><au>Felser, Claudia</au><au>Schoop, Leslie M</au><au>Bernevig, B Andrei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>2D Theoretically Twistable Material Database</atitle><jtitle>arXiv.org</jtitle><date>2024-11-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The study of twisted two-dimensional (2D) materials, where twisting layers create moiré superlattices, has opened new opportunities for investigating topological phases and strongly correlated physics. While systems such as twisted bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs) have been extensively studied, the broader potential of a seemingly infinite set of other twistable 2D materials remains largely unexplored. In this paper, we define "theoretically twistable materials" as single- or multi-layer structures that allow for the construction of simple continuum models of their moiré structures. This excludes, for example, materials with a "spaghetti" of bands or those with numerous crossing points at the Fermi level, for which theoretical moiré modeling is unfeasible. We present a high-throughput algorithm that systematically searches for theoretically twistable semimetals and insulators based on the Topological 2D Materials Database. By analyzing key electronic properties, we identify thousands of new candidate materials that could host rich topological and strongly correlated phenomena when twisted. We propose representative twistable materials for realizing different types of moiré systems, including materials with different Bravais lattices, valleys, and strength of spin-orbital coupling. We provide examples of crystal growth for several of these materials and showcase twisted bilayer band structures along with simplified twisted continuum models. Our results significantly broaden the scope of moiré heterostructures and provide a valuable resource for future experimental and theoretical studies on novel moiré systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3129862466 |
source | Publicly Available Content Database |
subjects | Algorithms Band theory Banded structure Bilayers Continuum modeling Crystal growth Crystal lattices Electron spin Graphene Heterostructures Insulators Materials selection Multilayers Superlattices Topology Transition metal compounds Two dimensional analysis Two dimensional materials |
title | 2D Theoretically Twistable Material Database |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=2D%20Theoretically%20Twistable%20Material%20Database&rft.jtitle=arXiv.org&rft.au=Jiang,%20Yi&rft.date=2024-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3129862466%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31298624663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3129862466&rft_id=info:pmid/&rfr_iscdi=true |