Loading…

ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis

ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activa...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry frontiers 2024-11, Vol.11 (23), p.8383-8391
Main Authors: Zhang, Chen, Gao, Xu, Liang, Qifeng, Li, Liang, Fang, Zebo, Wu, Rong, Shunhang Wei, Wang, Lei, Xu, Xiaoxiang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8391
container_issue 23
container_start_page 8383
container_title Inorganic chemistry frontiers
container_volume 11
creator Zhang, Chen
Gao, Xu
Liang, Qifeng
Li, Liang
Fang, Zebo
Wu, Rong
Shunhang Wei
Wang, Lei
Xu, Xiaoxiang
description ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O2. These intriguing properties endow ZnIn2S4 with excellent performance for sacrificial agent-free H2O2 photosynthesis via a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H2O2 can be produced over ZnIn2S4 with dual vacancies compared to pristine ZnIn2S4 without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H2O2 decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn2S4 through defect engineering and brings new mechanistic insights into the role of these defects.
doi_str_mv 10.1039/d4qi02030h
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130058670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130058670</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-45d7252cef9f2803647b780aa94e77981343ee50b8f87c720466eaf762c034d3</originalsourceid><addsrcrecordid>eNo9jU1LxDAYhIMouKx78RcEPEfffDXpURZ1Fxb24J68LGn7ZhspabdJFf-9FcXTzDMMM4TccrjnIMuHRp0DCJDQXpCFAC0Y11pe_nulr8kqpVDNJQ0lB7Mgp7e4jeJV0ehin1rEnOhnyC3NU3RVh7SZXEc_XO1iHTBR348UvQ8zxEyTq8fwA65j7jQnzI-IdCP2gg5tn_v0FXOLKaQbcuVdl3D1p0tyeH46rDdst3_Zrh93bOBcZqZ0Y4QWNfrSCwuyUKYyFpwrFRpTWi6VRNRQWW9NbQSookDnTSFqkKqRS3L3OzuM_XnClI_v_TTG-fEouQTQtjAgvwHopFiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130058670</pqid></control><display><type>article</type><title>ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis</title><source>Royal Society of Chemistry</source><creator>Zhang, Chen ; Gao, Xu ; Liang, Qifeng ; Li, Liang ; Fang, Zebo ; Wu, Rong ; Shunhang Wei ; Wang, Lei ; Xu, Xiaoxiang</creator><creatorcontrib>Zhang, Chen ; Gao, Xu ; Liang, Qifeng ; Li, Liang ; Fang, Zebo ; Wu, Rong ; Shunhang Wei ; Wang, Lei ; Xu, Xiaoxiang</creatorcontrib><description>ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O2. These intriguing properties endow ZnIn2S4 with excellent performance for sacrificial agent-free H2O2 photosynthesis via a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H2O2 can be produced over ZnIn2S4 with dual vacancies compared to pristine ZnIn2S4 without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H2O2 decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn2S4 through defect engineering and brings new mechanistic insights into the role of these defects.</description><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/d4qi02030h</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Chemical reduction ; Defects ; Energy of dissociation ; Excitons ; Free energy ; Hydrogen peroxide ; Light irradiation ; Nanosheets ; Oxygen reduction reactions ; Photosynthesis ; Protonation ; Single electrons</subject><ispartof>Inorganic chemistry frontiers, 2024-11, Vol.11 (23), p.8383-8391</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Liang, Qifeng</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Fang, Zebo</creatorcontrib><creatorcontrib>Wu, Rong</creatorcontrib><creatorcontrib>Shunhang Wei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Xiaoxiang</creatorcontrib><title>ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis</title><title>Inorganic chemistry frontiers</title><description>ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O2. These intriguing properties endow ZnIn2S4 with excellent performance for sacrificial agent-free H2O2 photosynthesis via a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H2O2 can be produced over ZnIn2S4 with dual vacancies compared to pristine ZnIn2S4 without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H2O2 decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn2S4 through defect engineering and brings new mechanistic insights into the role of these defects.</description><subject>Chemical reduction</subject><subject>Defects</subject><subject>Energy of dissociation</subject><subject>Excitons</subject><subject>Free energy</subject><subject>Hydrogen peroxide</subject><subject>Light irradiation</subject><subject>Nanosheets</subject><subject>Oxygen reduction reactions</subject><subject>Photosynthesis</subject><subject>Protonation</subject><subject>Single electrons</subject><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LxDAYhIMouKx78RcEPEfffDXpURZ1Fxb24J68LGn7ZhspabdJFf-9FcXTzDMMM4TccrjnIMuHRp0DCJDQXpCFAC0Y11pe_nulr8kqpVDNJQ0lB7Mgp7e4jeJV0ehin1rEnOhnyC3NU3RVh7SZXEc_XO1iHTBR348UvQ8zxEyTq8fwA65j7jQnzI-IdCP2gg5tn_v0FXOLKaQbcuVdl3D1p0tyeH46rDdst3_Zrh93bOBcZqZ0Y4QWNfrSCwuyUKYyFpwrFRpTWi6VRNRQWW9NbQSookDnTSFqkKqRS3L3OzuM_XnClI_v_TTG-fEouQTQtjAgvwHopFiQ</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhang, Chen</creator><creator>Gao, Xu</creator><creator>Liang, Qifeng</creator><creator>Li, Liang</creator><creator>Fang, Zebo</creator><creator>Wu, Rong</creator><creator>Shunhang Wei</creator><creator>Wang, Lei</creator><creator>Xu, Xiaoxiang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241119</creationdate><title>ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis</title><author>Zhang, Chen ; Gao, Xu ; Liang, Qifeng ; Li, Liang ; Fang, Zebo ; Wu, Rong ; Shunhang Wei ; Wang, Lei ; Xu, Xiaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-45d7252cef9f2803647b780aa94e77981343ee50b8f87c720466eaf762c034d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical reduction</topic><topic>Defects</topic><topic>Energy of dissociation</topic><topic>Excitons</topic><topic>Free energy</topic><topic>Hydrogen peroxide</topic><topic>Light irradiation</topic><topic>Nanosheets</topic><topic>Oxygen reduction reactions</topic><topic>Photosynthesis</topic><topic>Protonation</topic><topic>Single electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Gao, Xu</creatorcontrib><creatorcontrib>Liang, Qifeng</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Fang, Zebo</creatorcontrib><creatorcontrib>Wu, Rong</creatorcontrib><creatorcontrib>Shunhang Wei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Xiaoxiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chen</au><au>Gao, Xu</au><au>Liang, Qifeng</au><au>Li, Liang</au><au>Fang, Zebo</au><au>Wu, Rong</au><au>Shunhang Wei</au><au>Wang, Lei</au><au>Xu, Xiaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2024-11-19</date><risdate>2024</risdate><volume>11</volume><issue>23</issue><spage>8383</spage><epage>8391</epage><pages>8383-8391</pages><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>ZnIn2S4 nanosheets with tunable concentration of dual vacancies (i.e. Zn vacancy and S vacancy) were prepared and used for photocatalytic H2O2 production. Introducing dual vacancies effectively promotes exciton dissociation, facilitates O2 adsorption, and reduces the free energy of subsequent activation and protonation of adsorbed O2. These intriguing properties endow ZnIn2S4 with excellent performance for sacrificial agent-free H2O2 photosynthesis via a two-step single-electron oxygen reduction reaction pathway under AM 1.5 and visible-light irradiation. Almost double amounts of H2O2 can be produced over ZnIn2S4 with dual vacancies compared to pristine ZnIn2S4 without vacancies. Corresponding SCC efficiency and AQY at 420 ± 20 nm reached ∼0.031% and 0.34%, respectively. In addition, the abundant dual vacancies inhibit H2O2 decomposition because of enhanced hydrophilicity. This work provides a new strategy to improve the photocatalytic performance of ZnIn2S4 through defect engineering and brings new mechanistic insights into the role of these defects.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qi02030h</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2052-1545
ispartof Inorganic chemistry frontiers, 2024-11, Vol.11 (23), p.8383-8391
issn 2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_3130058670
source Royal Society of Chemistry
subjects Chemical reduction
Defects
Energy of dissociation
Excitons
Free energy
Hydrogen peroxide
Light irradiation
Nanosheets
Oxygen reduction reactions
Photosynthesis
Protonation
Single electrons
title ZnIn2S4 nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O2 photosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnIn2S4%20nanosheets%20with%20tunable%20dual%20vacancies%20for%20efficient%20sacrificial-agent-free%20H2O2%20photosynthesis&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Zhang,%20Chen&rft.date=2024-11-19&rft.volume=11&rft.issue=23&rft.spage=8383&rft.epage=8391&rft.pages=8383-8391&rft.issn=2052-1545&rft.eissn=2052-1553&rft_id=info:doi/10.1039/d4qi02030h&rft_dat=%3Cproquest%3E3130058670%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-45d7252cef9f2803647b780aa94e77981343ee50b8f87c720466eaf762c034d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130058670&rft_id=info:pmid/&rfr_iscdi=true