Loading…

Partly linear instrumental variables regressions without smoothing on the instruments

We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normali...

Full description

Saved in:
Bibliographic Details
Published in:Test (Madrid, Spain) Spain), 2024-09, Vol.33 (3), p.897-920
Main Authors: Florens, Jean-Pierre, Lapenta, Elia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13
container_end_page 920
container_issue 3
container_start_page 897
container_title Test (Madrid, Spain)
container_volume 33
creator Florens, Jean-Pierre
Lapenta, Elia
description We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.
doi_str_mv 10.1007/s11749-024-00931-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130126043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkI6r4kirBQGfLSZ3WVWoXnwNqfz2BIMHEdDe8z3u6h5BLDtccoLhBzousYiAyBlBJzg5HZMJLJVkpFBwPO5eSgSrVKTlD3ACoTAk-IYsXE1O3p53z1kTqPKbYb61PpqPvJjpTdxZptKtoEV3wSD9cWoc-UdyGkNbOr2jwNK3tHxbPyUlrOrQXP3NKFvd3r7NHNn9-eJrdzlkjABIr27opazBLUYhaNko0RbWUMlO5zYvcVLZoahCyzWVlSwOVyPMMlnlrW26LuuVySq7G3l0Mb73FpDehj344qSWXwIffMzmkxJhqYkCMttW76LYm7jUH_aVPj_r0oE9_69OHAZIjhEPYr2z8rf6H-gQpFXVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130126043</pqid></control><display><type>article</type><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><source>Springer Nature</source><creator>Florens, Jean-Pierre ; Lapenta, Elia</creator><creatorcontrib>Florens, Jean-Pierre ; Lapenta, Elia</creatorcontrib><description>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-024-00931-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Normality ; Original Paper ; Parameter estimation ; Parameter identification ; Regularization ; Statistical Theory and Methods ; Statistics ; Statistics for Business</subject><ispartof>Test (Madrid, Spain), 2024-09, Vol.33 (3), p.897-920</ispartof><rights>The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Lapenta, Elia</creatorcontrib><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</description><subject>Asymptotic methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Normality</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Regularization</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkI6r4kirBQGfLSZ3WVWoXnwNqfz2BIMHEdDe8z3u6h5BLDtccoLhBzousYiAyBlBJzg5HZMJLJVkpFBwPO5eSgSrVKTlD3ACoTAk-IYsXE1O3p53z1kTqPKbYb61PpqPvJjpTdxZptKtoEV3wSD9cWoc-UdyGkNbOr2jwNK3tHxbPyUlrOrQXP3NKFvd3r7NHNn9-eJrdzlkjABIr27opazBLUYhaNko0RbWUMlO5zYvcVLZoahCyzWVlSwOVyPMMlnlrW26LuuVySq7G3l0Mb73FpDehj344qSWXwIffMzmkxJhqYkCMttW76LYm7jUH_aVPj_r0oE9_69OHAZIjhEPYr2z8rf6H-gQpFXVf</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Florens, Jean-Pierre</creator><creator>Lapenta, Elia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><author>Florens, Jean-Pierre ; Lapenta, Elia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Normality</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Regularization</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Lapenta, Elia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florens, Jean-Pierre</au><au>Lapenta, Elia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partly linear instrumental variables regressions without smoothing on the instruments</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>33</volume><issue>3</issue><spage>897</spage><epage>920</epage><pages>897-920</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-024-00931-z</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2024-09, Vol.33 (3), p.897-920
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_journals_3130126043
source Springer Nature
subjects Asymptotic methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Normality
Original Paper
Parameter estimation
Parameter identification
Regularization
Statistical Theory and Methods
Statistics
Statistics for Business
title Partly linear instrumental variables regressions without smoothing on the instruments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partly%20linear%20instrumental%20variables%20regressions%20without%20smoothing%20on%20the%20instruments&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Florens,%20Jean-Pierre&rft.date=2024-09-01&rft.volume=33&rft.issue=3&rft.spage=897&rft.epage=920&rft.pages=897-920&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-024-00931-z&rft_dat=%3Cproquest_cross%3E3130126043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130126043&rft_id=info:pmid/&rfr_iscdi=true