Loading…
Partly linear instrumental variables regressions without smoothing on the instruments
We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normali...
Saved in:
Published in: | Test (Madrid, Spain) Spain), 2024-09, Vol.33 (3), p.897-920 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13 |
container_end_page | 920 |
container_issue | 3 |
container_start_page | 897 |
container_title | Test (Madrid, Spain) |
container_volume | 33 |
creator | Florens, Jean-Pierre Lapenta, Elia |
description | We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators. |
doi_str_mv | 10.1007/s11749-024-00931-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130126043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkI6r4kirBQGfLSZ3WVWoXnwNqfz2BIMHEdDe8z3u6h5BLDtccoLhBzousYiAyBlBJzg5HZMJLJVkpFBwPO5eSgSrVKTlD3ACoTAk-IYsXE1O3p53z1kTqPKbYb61PpqPvJjpTdxZptKtoEV3wSD9cWoc-UdyGkNbOr2jwNK3tHxbPyUlrOrQXP3NKFvd3r7NHNn9-eJrdzlkjABIr27opazBLUYhaNko0RbWUMlO5zYvcVLZoahCyzWVlSwOVyPMMlnlrW26LuuVySq7G3l0Mb73FpDehj344qSWXwIffMzmkxJhqYkCMttW76LYm7jUH_aVPj_r0oE9_69OHAZIjhEPYr2z8rf6H-gQpFXVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130126043</pqid></control><display><type>article</type><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><source>Springer Nature</source><creator>Florens, Jean-Pierre ; Lapenta, Elia</creator><creatorcontrib>Florens, Jean-Pierre ; Lapenta, Elia</creatorcontrib><description>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-024-00931-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Normality ; Original Paper ; Parameter estimation ; Parameter identification ; Regularization ; Statistical Theory and Methods ; Statistics ; Statistics for Business</subject><ispartof>Test (Madrid, Spain), 2024-09, Vol.33 (3), p.897-920</ispartof><rights>The Author(s) under exclusive licence to Sociedad de Estadística e Investigación Operativa 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Lapenta, Elia</creatorcontrib><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</description><subject>Asymptotic methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Normality</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Regularization</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkI6r4kirBQGfLSZ3WVWoXnwNqfz2BIMHEdDe8z3u6h5BLDtccoLhBzousYiAyBlBJzg5HZMJLJVkpFBwPO5eSgSrVKTlD3ACoTAk-IYsXE1O3p53z1kTqPKbYb61PpqPvJjpTdxZptKtoEV3wSD9cWoc-UdyGkNbOr2jwNK3tHxbPyUlrOrQXP3NKFvd3r7NHNn9-eJrdzlkjABIr27opazBLUYhaNko0RbWUMlO5zYvcVLZoahCyzWVlSwOVyPMMlnlrW26LuuVySq7G3l0Mb73FpDehj344qSWXwIffMzmkxJhqYkCMttW76LYm7jUH_aVPj_r0oE9_69OHAZIjhEPYr2z8rf6H-gQpFXVf</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Florens, Jean-Pierre</creator><creator>Lapenta, Elia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Partly linear instrumental variables regressions without smoothing on the instruments</title><author>Florens, Jean-Pierre ; Lapenta, Elia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Normality</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Regularization</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florens, Jean-Pierre</creatorcontrib><creatorcontrib>Lapenta, Elia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florens, Jean-Pierre</au><au>Lapenta, Elia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partly linear instrumental variables regressions without smoothing on the instruments</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>33</volume><issue>3</issue><spage>897</spage><epage>920</epage><pages>897-920</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber–Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-024-00931-z</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2024-09, Vol.33 (3), p.897-920 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_journals_3130126043 |
source | Springer Nature |
subjects | Asymptotic methods Economics Finance Insurance Management Mathematics and Statistics Normality Original Paper Parameter estimation Parameter identification Regularization Statistical Theory and Methods Statistics Statistics for Business |
title | Partly linear instrumental variables regressions without smoothing on the instruments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partly%20linear%20instrumental%20variables%20regressions%20without%20smoothing%20on%20the%20instruments&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Florens,%20Jean-Pierre&rft.date=2024-09-01&rft.volume=33&rft.issue=3&rft.spage=897&rft.epage=920&rft.pages=897-920&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-024-00931-z&rft_dat=%3Cproquest_cross%3E3130126043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-8fbc8b0ad272b3c62c79d33465e575a9e7cb023f539e8a0925540d5fef1e7bf13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130126043&rft_id=info:pmid/&rfr_iscdi=true |