Loading…

Distinct mechanisms regulate induction of messenger ribonucleic acid for prostaglandin (PG) G/H synthase-2, PGE (EP3) receptor, and PGF2 alpha receptor in bovine preovulatory follicles

We have evaluated the in vivo and in vitro regulation and temporal expression of messenger RNA (mRNA) for prostaglandin (PG) G/H synthase-2 (PGHS-2) and two specific PG receptors, PGF2alpha receptor (FP receptor) and PGE receptor EP3 subtype (EP3 receptor), in bovine preovulatory follicular cells an...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 1996-08, Vol.137 (8), p.3348-3355
Main Authors: Tsai, S J, Wiltbank, M C, Bodensteiner, K J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have evaluated the in vivo and in vitro regulation and temporal expression of messenger RNA (mRNA) for prostaglandin (PG) G/H synthase-2 (PGHS-2) and two specific PG receptors, PGF2alpha receptor (FP receptor) and PGE receptor EP3 subtype (EP3 receptor), in bovine preovulatory follicular cells and luteal cells. An in vivo study showed that PGHS-2 mRNA was not detected in granulosa cells and was highly but transiently induced by the LH surge before ovulation. FP and EP3 receptor mRNAs were present at extremely low concentrations in granulosa or thecal cells and did not increase before ovulation. Messenger RNA for FP receptor increased more than 500- and 2500-fold at 24 and 48 h after ovulation, respectively, and these high amounts were maintained at midluteal phase. On the other hand, mRNA for EP3 receptor remained low with FP receptor mRNA 1000-fold greater than EP3 receptor mRNA in the corpus luteum. In vitro culture of bovine granulosa cells using hCG, forskolin, and phorbol didecanoate demonstrated that induction of FP receptor mRNA was mediated through protein kinase (PK) A. In contrast, EP3 receptor mRNA was stimulated through PKC. PGHS-2 was acutely ( < 12 h) increased by PKA, and to a lesser extent by PKC. Temporal expression of FP receptor mRNA is not consistent with the involvement of FP receptor in ovulation and suggests that PKA stimulates PGHS-2 and FP receptor mRNA by distinct mechanisms.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.137.8.3348