Loading…

Androgens Modulate Nitric Oxide Synthase Messenger Ribonucleic Acid Expression in Neurons of the Major Pelvic Ganglion in the Rat

Expression and androgen regulation of the gene for neuronal nitric oxide synthase (NOS I) were examined in neurons of the major pelvic ganglia in male rats. Some of these postganglionic neurons innervate the penis and produce nitric oxide, which is believed to play a major role in penile erection. R...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 1997-08, Vol.138 (8), p.3093-3102
Main Authors: Schirar, Alain, Bonnefond, Catherine, Meusnier, Chantal, Devinoy, Eve
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Expression and androgen regulation of the gene for neuronal nitric oxide synthase (NOS I) were examined in neurons of the major pelvic ganglia in male rats. Some of these postganglionic neurons innervate the penis and produce nitric oxide, which is believed to play a major role in penile erection. Rats were either castrated or sham operated and implanted with SILASTIC brand capsules filled with powdered testosterone (T) or 5α-dihydrotestosterone (5αDHT) or left empty. After 4 days, the number of neurons intensely stained for NADPH-diaphorase as well as those giving a NOS I signal in in situ hybridization experiments increased in castrated rats treated with testosterone by 31% and 42%, respectively, relative to those in untreated castrated rats. This suggests that the increase in NADPH-diaphorase activity resulted from enzyme synthesis and was due to a modification of NOS I messenger RNA (mRNA) accumulation. After 7 days, Northern blot analysis showed that castration produced a decrease in the amount of NOS I mRNA relative to that of ribosomal RNA. This decrease was almost prevented by T treatment. No significant differences were observed by reverse transcriptase-PCR between 7-day and 28-day treatments. However, in 7-day castrated rats treated with 5αDHT, NOS I signals relative to those of hypoxanthine phosphoribosyltransferase, taken as reference, were significantly higher than those in castrated rats and resembled those in sham-castrated rats, suggesting that 5αDHT was probably more potent than testosterone in preventing the decrease in NOS I mRNA levels elicited by castration. These results show that NOS I can be positively regulated by androgens and are consistent with the suggestion that these steroids play a role in the physiological processes of penile erection.
ISSN:0013-7227
1945-7170
DOI:10.1210/endo.138.8.5310