Loading…
Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity
We consider a nonautonomous semilinear elliptic problem where the power nonlinearity is multiplied by a discontinuous coefficient that equals one inside a bounded open set \(\Omega\) and it equals minus one in its complement. In the slightly subcritical regime, we prove the existence of concentratin...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clapp, Mónica Pistoia, Angela Saldaña, Alberto |
description | We consider a nonautonomous semilinear elliptic problem where the power nonlinearity is multiplied by a discontinuous coefficient that equals one inside a bounded open set \(\Omega\) and it equals minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of \(\Omega\), we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when \(\Omega\) has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130500588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130500588</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305005883</originalsourceid><addsrcrecordid>eNqNy70KwjAUhuEgCBbtPRxwLqSJ1e6iuLi5l1BP21NikuYH8e616AU4fcP7fAuWCSnLot4JsWJ5CCPnXOwPoqpkxu7XpCM5jRCsTpGsCRAtKAj4IE0GlQfUmlykFnBKaibwpDjMZlDeQTso0yPYDgL1BshAHBCMNd87xdeGLTulA-a_XbPt-XQ7Xgrn7ZQwxGa0yZtPamQpecV5VdfyP_UGcBlGyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130500588</pqid></control><display><type>article</type><title>Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity</title><source>Publicly Available Content Database</source><creator>Clapp, Mónica ; Pistoia, Angela ; Saldaña, Alberto</creator><creatorcontrib>Clapp, Mónica ; Pistoia, Angela ; Saldaña, Alberto</creatorcontrib><description>We consider a nonautonomous semilinear elliptic problem where the power nonlinearity is multiplied by a discontinuous coefficient that equals one inside a bounded open set \(\Omega\) and it equals minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of \(\Omega\), we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when \(\Omega\) has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonlinearity ; Topology</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3130500588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Clapp, Mónica</creatorcontrib><creatorcontrib>Pistoia, Angela</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><title>Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity</title><title>arXiv.org</title><description>We consider a nonautonomous semilinear elliptic problem where the power nonlinearity is multiplied by a discontinuous coefficient that equals one inside a bounded open set \(\Omega\) and it equals minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of \(\Omega\), we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when \(\Omega\) has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.</description><subject>Nonlinearity</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy70KwjAUhuEgCBbtPRxwLqSJ1e6iuLi5l1BP21NikuYH8e616AU4fcP7fAuWCSnLot4JsWJ5CCPnXOwPoqpkxu7XpCM5jRCsTpGsCRAtKAj4IE0GlQfUmlykFnBKaibwpDjMZlDeQTso0yPYDgL1BshAHBCMNd87xdeGLTulA-a_XbPt-XQ7Xgrn7ZQwxGa0yZtPamQpecV5VdfyP_UGcBlGyw</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Clapp, Mónica</creator><creator>Pistoia, Angela</creator><creator>Saldaña, Alberto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241116</creationdate><title>Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity</title><author>Clapp, Mónica ; Pistoia, Angela ; Saldaña, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305005883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Nonlinearity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Clapp, Mónica</creatorcontrib><creatorcontrib>Pistoia, Angela</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapp, Mónica</au><au>Pistoia, Angela</au><au>Saldaña, Alberto</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity</atitle><jtitle>arXiv.org</jtitle><date>2024-11-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider a nonautonomous semilinear elliptic problem where the power nonlinearity is multiplied by a discontinuous coefficient that equals one inside a bounded open set \(\Omega\) and it equals minus one in its complement. In the slightly subcritical regime, we prove the existence of concentrating positive and nodal solutions. Moreover, depending on the geometry of \(\Omega\), we establish multiplicity of positive solutions. Finally, in the critical case, we show the existence of a blow-up positive solution when \(\Omega\) has nontrivial topology. Our proofs rely on a Lyapunov-Schmidt reduction strategy which in these problems turns out to be remarkably simple. We take this opportunity to highlight certain aspects of the method that are often overlooked and present it in a more accessible and detailed manner for nonexperts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3130500588 |
source | Publicly Available Content Database |
subjects | Nonlinearity Topology |
title | Multiple solutions to a semilinear elliptic equation with a sharp change of sign in the nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multiple%20solutions%20to%20a%20semilinear%20elliptic%20equation%20with%20a%20sharp%20change%20of%20sign%20in%20the%20nonlinearity&rft.jtitle=arXiv.org&rft.au=Clapp,%20M%C3%B3nica&rft.date=2024-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130500588%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31305005883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130500588&rft_id=info:pmid/&rfr_iscdi=true |