Loading…

Intraovarian Excess of Nerve Growth Factor Increases Androgen Secretion and Disrupts Estrous Cyclicity in the Rat

Abstract A single injection of estradiol valerate induces a form of cystic ovary resembling some aspects of the human polycystic ovarian syndrome. Preceding the development of follicular cysts, there is an increase in intraovarian synthesis of nerve growth factor (NGF) and the low affinity NGF recep...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2000-03, Vol.141 (3), p.1073-1082
Main Authors: Dissen, G. A., Lara, H. E., Leyton, V., Paredes, A., Hill, D. F., Costa, M. E., Martinez-Serrano, A., Ojeda, S. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A single injection of estradiol valerate induces a form of cystic ovary resembling some aspects of the human polycystic ovarian syndrome. Preceding the development of follicular cysts, there is an increase in intraovarian synthesis of nerve growth factor (NGF) and the low affinity NGF receptor (p75 NGFR). Selective blockade of NGF actions and p75 NGFR synthesis in the ovary restored estrous cyclicity and ovulatory capacity in estradiol valerate-treated rats, suggesting that an increase in NGF-dependent, p75 NGFR-mediated actions within the ovary contributes to the development of cystic ovarian disease. We have tested this hypothesis by grafting NGF-producing neural progenitor cells into the ovary of juvenile rats that have been induced to ovulate precociously by a single injection of PMSG. The NGF-producing cells, detected by their content of immunoreactive p75 NGFR material, were found scattered throughout the ovary with some of them infiltrating the granulosa cell compartment of large, precystic follicles. Ovarian NGF content was 2-fold higher than in the ovary of rats receiving control cells. Estrous cyclicity was disrupted, with the animals showing prolonged periods of persistent estrus, and an almost continuous background of vaginal cornified cells at other phases of the estrous cycle. Morphometric analysis revealed that the presence of NGF-producing cells neither reduced the total number of corpora lutea per ovary nor significantly increased the formation of follicular cysts. However, the ovaries receiving these cells showed an increased incidence of precystic, type III follicles, accompanied by a reduced number of healthy antral follicles, and an increased size of both healthy and atretic follicles. These changes in follicular dynamics were accompanied by a selective increase in serum androstenedione levels. The results show that an abnormally elevated production of NGF within the ovary suffices to initiate several of the structural and functional alterations associated with the development of follicular cysts in the rat ovary.
ISSN:0013-7227
1945-7170
DOI:10.1210/endo.141.3.7396