Loading…

A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts

Attaining high relative density (RD) is of paramount importance for any new alloy system manufactured through the laser powder bed fusion (L-PBF) process. However, the conventional design of experiment (DOE) methods poses a significant challenge due to the large number of process parameters involved...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology 2024-12, Vol.135 (9-10), p.4147-4167
Main Authors: Khalad, Abdul, Telasang, Gururaj, Kadali, Kondababu, Zhang, Peng Neo, Xu, Wei, Chinthapenta, Viswanath
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-9a5e1ec841d33d5af5c17b5eb93cbfaefd7ac501d729f87535e550f9ea1748393
container_end_page 4167
container_issue 9-10
container_start_page 4147
container_title International journal of advanced manufacturing technology
container_volume 135
creator Khalad, Abdul
Telasang, Gururaj
Kadali, Kondababu
Zhang, Peng Neo
Xu, Wei
Chinthapenta, Viswanath
description Attaining high relative density (RD) is of paramount importance for any new alloy system manufactured through the laser powder bed fusion (L-PBF) process. However, the conventional design of experiment (DOE) methods poses a significant challenge due to the large number of process parameters involved. This study explores the data-driven machine-learning (ML) approach to confine the search for the optimized process parameters to the most significant process parameters. The relevant datasets were obtained from existing literature spanning across the last decade on 11 different alloy systems. The collected datasets were divided into 80:20 for training and testing. In this work, a detailed framework is presented to identify the most appropriate ML model to represent the complexities and nonlinearities in the data accurately. Among the employed models, the gradient boosting–particle swarm optimization (GB-PSO) exhibited the highest predictive performance, with mean absolute error (MAE) and coefficient of determination ( R 2 ) values of 0.20 and 0.99 for training and 0.73 and 0.95 for testing, respectively. The Shapley additive explanations (SHAP) analysis was utilized to comprehend the global and local significance of material properties and machine process parameters. The reduced experimental design from the data-driven ML framework is used to validate the predictions from the trained hybrid GB-PSO model. Validation for achieving the highest RD is carried out on the Inconel 718 alloy system deposited in-house. Graphical Abstract
doi_str_mv 10.1007/s00170-024-14735-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130563533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130563533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9a5e1ec841d33d5af5c17b5eb93cbfaefd7ac501d729f87535e550f9ea1748393</originalsourceid><addsrcrecordid>eNp9kE1LJDEURYMo2H78AVeBWUeTepVK1VJknBkQ3Og6pCsvbbQ6Vb5U26O_3mgL7lxdeJx7HxzGzpQ8V1KaiyylMlLIqhaqNqDFdo8tVA0gQCq9zxayaloBpmkP2VHOjwVvVNMu2P9LvsKE5Ib4hp6vXf8QE_IBHaWYVjyQW-N2pCceRuLezU54ii-Y-EToYz_HMfExcMLBzeXOPaYc51ceEx9cRuLTuPUllmU9bPIHPjma8wk7CG7IePqVx-z--vfd1V9xc_vn39XljegrKWfROY0K-7ZWHsBrF3SvzFLjsoN-GRwGb1yvpfKm6kJrNGjUWoYOnTJ1Cx0cs1-73YnG5w3m2T6OG0rlpQUFUjegAQpV7aiexpwJg50orh29WiXth2G7M2yLYftp2G5LCXalXOC0Qvqe_qH1Dq_CgXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130563533</pqid></control><display><type>article</type><title>A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts</title><source>Springer Link</source><creator>Khalad, Abdul ; Telasang, Gururaj ; Kadali, Kondababu ; Zhang, Peng Neo ; Xu, Wei ; Chinthapenta, Viswanath</creator><creatorcontrib>Khalad, Abdul ; Telasang, Gururaj ; Kadali, Kondababu ; Zhang, Peng Neo ; Xu, Wei ; Chinthapenta, Viswanath</creatorcontrib><description>Attaining high relative density (RD) is of paramount importance for any new alloy system manufactured through the laser powder bed fusion (L-PBF) process. However, the conventional design of experiment (DOE) methods poses a significant challenge due to the large number of process parameters involved. This study explores the data-driven machine-learning (ML) approach to confine the search for the optimized process parameters to the most significant process parameters. The relevant datasets were obtained from existing literature spanning across the last decade on 11 different alloy systems. The collected datasets were divided into 80:20 for training and testing. In this work, a detailed framework is presented to identify the most appropriate ML model to represent the complexities and nonlinearities in the data accurately. Among the employed models, the gradient boosting–particle swarm optimization (GB-PSO) exhibited the highest predictive performance, with mean absolute error (MAE) and coefficient of determination ( R 2 ) values of 0.20 and 0.99 for training and 0.73 and 0.95 for testing, respectively. The Shapley additive explanations (SHAP) analysis was utilized to comprehend the global and local significance of material properties and machine process parameters. The reduced experimental design from the data-driven ML framework is used to validate the predictions from the trained hybrid GB-PSO model. Validation for achieving the highest RD is carried out on the Inconel 718 alloy system deposited in-house. Graphical Abstract</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-14735-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloy systems ; Beds (process engineering) ; CAE) and Design ; Computer-Aided Engineering (CAD ; Datasets ; Density ; Design of experiments ; Engineering ; Industrial and Production Engineering ; Machine learning ; Material properties ; Mechanical Engineering ; Media Management ; Nickel base alloys ; Original Article ; Parameter identification ; Particle swarm optimization ; Powder beds ; Process parameters ; Specific gravity ; Superalloys</subject><ispartof>International journal of advanced manufacturing technology, 2024-12, Vol.135 (9-10), p.4147-4167</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9a5e1ec841d33d5af5c17b5eb93cbfaefd7ac501d729f87535e550f9ea1748393</cites><orcidid>0000-0001-9038-6274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Khalad, Abdul</creatorcontrib><creatorcontrib>Telasang, Gururaj</creatorcontrib><creatorcontrib>Kadali, Kondababu</creatorcontrib><creatorcontrib>Zhang, Peng Neo</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chinthapenta, Viswanath</creatorcontrib><title>A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Attaining high relative density (RD) is of paramount importance for any new alloy system manufactured through the laser powder bed fusion (L-PBF) process. However, the conventional design of experiment (DOE) methods poses a significant challenge due to the large number of process parameters involved. This study explores the data-driven machine-learning (ML) approach to confine the search for the optimized process parameters to the most significant process parameters. The relevant datasets were obtained from existing literature spanning across the last decade on 11 different alloy systems. The collected datasets were divided into 80:20 for training and testing. In this work, a detailed framework is presented to identify the most appropriate ML model to represent the complexities and nonlinearities in the data accurately. Among the employed models, the gradient boosting–particle swarm optimization (GB-PSO) exhibited the highest predictive performance, with mean absolute error (MAE) and coefficient of determination ( R 2 ) values of 0.20 and 0.99 for training and 0.73 and 0.95 for testing, respectively. The Shapley additive explanations (SHAP) analysis was utilized to comprehend the global and local significance of material properties and machine process parameters. The reduced experimental design from the data-driven ML framework is used to validate the predictions from the trained hybrid GB-PSO model. Validation for achieving the highest RD is carried out on the Inconel 718 alloy system deposited in-house. Graphical Abstract</description><subject>Alloy systems</subject><subject>Beds (process engineering)</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Datasets</subject><subject>Density</subject><subject>Design of experiments</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Nickel base alloys</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Particle swarm optimization</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Specific gravity</subject><subject>Superalloys</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEURYMo2H78AVeBWUeTepVK1VJknBkQ3Og6pCsvbbQ6Vb5U26O_3mgL7lxdeJx7HxzGzpQ8V1KaiyylMlLIqhaqNqDFdo8tVA0gQCq9zxayaloBpmkP2VHOjwVvVNMu2P9LvsKE5Ib4hp6vXf8QE_IBHaWYVjyQW-N2pCceRuLezU54ii-Y-EToYz_HMfExcMLBzeXOPaYc51ceEx9cRuLTuPUllmU9bPIHPjma8wk7CG7IePqVx-z--vfd1V9xc_vn39XljegrKWfROY0K-7ZWHsBrF3SvzFLjsoN-GRwGb1yvpfKm6kJrNGjUWoYOnTJ1Cx0cs1-73YnG5w3m2T6OG0rlpQUFUjegAQpV7aiexpwJg50orh29WiXth2G7M2yLYftp2G5LCXalXOC0Qvqe_qH1Dq_CgXU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Khalad, Abdul</creator><creator>Telasang, Gururaj</creator><creator>Kadali, Kondababu</creator><creator>Zhang, Peng Neo</creator><creator>Xu, Wei</creator><creator>Chinthapenta, Viswanath</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9038-6274</orcidid></search><sort><creationdate>20241201</creationdate><title>A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts</title><author>Khalad, Abdul ; Telasang, Gururaj ; Kadali, Kondababu ; Zhang, Peng Neo ; Xu, Wei ; Chinthapenta, Viswanath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9a5e1ec841d33d5af5c17b5eb93cbfaefd7ac501d729f87535e550f9ea1748393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloy systems</topic><topic>Beds (process engineering)</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Datasets</topic><topic>Density</topic><topic>Design of experiments</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Nickel base alloys</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Particle swarm optimization</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Specific gravity</topic><topic>Superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalad, Abdul</creatorcontrib><creatorcontrib>Telasang, Gururaj</creatorcontrib><creatorcontrib>Kadali, Kondababu</creatorcontrib><creatorcontrib>Zhang, Peng Neo</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chinthapenta, Viswanath</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalad, Abdul</au><au>Telasang, Gururaj</au><au>Kadali, Kondababu</au><au>Zhang, Peng Neo</au><au>Xu, Wei</au><au>Chinthapenta, Viswanath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>135</volume><issue>9-10</issue><spage>4147</spage><epage>4167</epage><pages>4147-4167</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Attaining high relative density (RD) is of paramount importance for any new alloy system manufactured through the laser powder bed fusion (L-PBF) process. However, the conventional design of experiment (DOE) methods poses a significant challenge due to the large number of process parameters involved. This study explores the data-driven machine-learning (ML) approach to confine the search for the optimized process parameters to the most significant process parameters. The relevant datasets were obtained from existing literature spanning across the last decade on 11 different alloy systems. The collected datasets were divided into 80:20 for training and testing. In this work, a detailed framework is presented to identify the most appropriate ML model to represent the complexities and nonlinearities in the data accurately. Among the employed models, the gradient boosting–particle swarm optimization (GB-PSO) exhibited the highest predictive performance, with mean absolute error (MAE) and coefficient of determination ( R 2 ) values of 0.20 and 0.99 for training and 0.73 and 0.95 for testing, respectively. The Shapley additive explanations (SHAP) analysis was utilized to comprehend the global and local significance of material properties and machine process parameters. The reduced experimental design from the data-driven ML framework is used to validate the predictions from the trained hybrid GB-PSO model. Validation for achieving the highest RD is carried out on the Inconel 718 alloy system deposited in-house. Graphical Abstract</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-14735-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9038-6274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-12, Vol.135 (9-10), p.4147-4167
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3130563533
source Springer Link
subjects Alloy systems
Beds (process engineering)
CAE) and Design
Computer-Aided Engineering (CAD
Datasets
Density
Design of experiments
Engineering
Industrial and Production Engineering
Machine learning
Material properties
Mechanical Engineering
Media Management
Nickel base alloys
Original Article
Parameter identification
Particle swarm optimization
Powder beds
Process parameters
Specific gravity
Superalloys
title A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20machine%20learning%20framework%20for%20data-driven%20prediction%20of%20relative%20density%20in%20laser%20powder%20bed%20fusion%20parts&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Khalad,%20Abdul&rft.date=2024-12-01&rft.volume=135&rft.issue=9-10&rft.spage=4147&rft.epage=4167&rft.pages=4147-4167&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-14735-w&rft_dat=%3Cproquest_cross%3E3130563533%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-9a5e1ec841d33d5af5c17b5eb93cbfaefd7ac501d729f87535e550f9ea1748393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130563533&rft_id=info:pmid/&rfr_iscdi=true