Loading…
Hyperstimulation and a Gonadotropin-Releasing Hormone Agonist Modulate Ovarian Vascular Permeability by Altering Expression of the Tight Junction Protein Claudin-5
We investigated the mechanism by which a GnRH agonist (GnRHa) affects ovarian vascularity, vascular permeability, and expression of the tight junction protein claudin-5 in a rat model of ovarian hyperstimulation syndrome (OHSS). Hyperstimulated rats received excessive doses of pregnant mare serum go...
Saved in:
Published in: | Endocrinology (Philadelphia) 2006-02, Vol.147 (2), p.694-699 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the mechanism by which a GnRH agonist (GnRHa) affects ovarian vascularity, vascular permeability, and expression of the tight junction protein claudin-5 in a rat model of ovarian hyperstimulation syndrome (OHSS). Hyperstimulated rats received excessive doses of pregnant mare serum gonadotropin (PMSG; 50 IU/d) for 4 consecutive days, from d 25 to 28 of life, followed by 25 IU human chorionic gonadotropin (hCG) on d 29. Control rats received 10 IU PMSG on d 27 of life, followed by 10 IU hCG on d 29. GnRHa (leuprolide 100 μg/kg·d) was administered to some hyperstimulated rats either on d 29 and 30 (short-term GnRHa treatment) or from d 25 to 30 (long-term GnRHa treatment). Ovarian vascular density (vessels per 10 mm2) and vessel endothelial area (percent) were assessed by immunohistochemical analysis of the distribution of von Willebrand factor, whereas vascular permeability was evaluated based on leakage of Evans blue. High doses of PMSG and hCG significantly increased ovarian weight, vascular permeability, vascular density, and the vessel endothelial area and significantly reduced expression of claudin-5 protein and mRNA. All of these effects were significantly and dose-dependently inhibited by administration of GnRHa. This suggests that reduced expression of claudin-5 plays a crucial role in the increased ovarian vascular permeability seen in OHSS and that its expression can be modulated by GnRHa treatment. Indeed, preventing redistribution of tight junction proteins in endothelial cells and the resultant loss of endothelial barrier architecture might be the key to protecting patients against massive extravascular fluid accumulation in cases of OHSS. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2005-0700 |