Loading…
A mean-error-based time-step control method for detonation simulation
To improve the computational efficiency in implicit-explicit (IMEX) algorithms for stiff detonation problems, the Mean Error Time Control (METC) method is proposed. The core of METC is a novel selected full-field error estimation. This method estimates the full-field error by averaging the errors in...
Saved in:
Published in: | Physics of fluids (1994) 2024-11, Vol.36 (11) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c182t-6979cde85145a18ae8a2d5debae08d3ef237cdb877bd176dce4afeb9200e41293 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Jia, Boyue Xie, Mingyun Zhang, Xuke Zhang, Bin |
description | To improve the computational efficiency in implicit-explicit (IMEX) algorithms for stiff detonation problems, the Mean Error Time Control (METC) method is proposed. The core of METC is a novel selected full-field error estimation. This method estimates the full-field error by averaging the errors in regions of significant stiffness. An error controller with integral (I) feedback is then used to determine the neighboring time-step ratios to obtain time-steps within the IMEX stability range. This new strategy ensures a larger time-step while maintaining higher simulation accuracy and making the time-step change more smoothly, providing a reasonable approximation of full-field time error. It is been tested on one-dimensional, two-dimensional oblique, and rotating detonation cases. Compared with the fixed Courant–Friedrichs–Lewy number method, the METC method achieves speedup ratios of 1.48–5.60 for all types of detonation problems related to hydrogen fuels, and the speedup ratio is up to 4.67 for hydrocarbon fuels with greater stiffness. The METC method overcomes the inefficiencies caused by too small a time-step in the Proportional–Integral method in multidimensional reaction flows. |
doi_str_mv | 10.1063/5.0233847 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130939301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130939301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-6979cde85145a18ae8a2d5debae08d3ef237cdb877bd176dce4afeb9200e41293</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSEwguZzjxB9jVZUPqRILzJZjX0SqJi62M_DvST9mpnuHR3e6l5B7BgsGgj_XCyg5V5W8IDMGSlMphLg8ZAlUCM6uyU1KWwDguhQzsl4WPdqBYowh0sYm9EXueqQp475wYcgx7CaSv4Mv2hALjzkMNndhKFLXj7tjvCVXrd0lvDvPOfl6WX-u3ujm4_V9tdxQx1SZqdBSO4-qZlVtmbKobOlrj41FUJ5jW3LpfKOkbDyTwjusbIuNLgGwYqXmc_Jw2ruP4WfElM02jHGYThrOOGiuObBJPZ6UiyGliK3Zx6638dcwMIeWTG3OLU326WST6_Lxl3_wH8FWZyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130939301</pqid></control><display><type>article</type><title>A mean-error-based time-step control method for detonation simulation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Jia, Boyue ; Xie, Mingyun ; Zhang, Xuke ; Zhang, Bin</creator><creatorcontrib>Jia, Boyue ; Xie, Mingyun ; Zhang, Xuke ; Zhang, Bin</creatorcontrib><description>To improve the computational efficiency in implicit-explicit (IMEX) algorithms for stiff detonation problems, the Mean Error Time Control (METC) method is proposed. The core of METC is a novel selected full-field error estimation. This method estimates the full-field error by averaging the errors in regions of significant stiffness. An error controller with integral (I) feedback is then used to determine the neighboring time-step ratios to obtain time-steps within the IMEX stability range. This new strategy ensures a larger time-step while maintaining higher simulation accuracy and making the time-step change more smoothly, providing a reasonable approximation of full-field time error. It is been tested on one-dimensional, two-dimensional oblique, and rotating detonation cases. Compared with the fixed Courant–Friedrichs–Lewy number method, the METC method achieves speedup ratios of 1.48–5.60 for all types of detonation problems related to hydrogen fuels, and the speedup ratio is up to 4.67 for hydrocarbon fuels with greater stiffness. The METC method overcomes the inefficiencies caused by too small a time-step in the Proportional–Integral method in multidimensional reaction flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0233847</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Control methods ; Detonation ; Hydrocarbon fuels ; Hydrogen fuels ; Stiffness</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-6979cde85145a18ae8a2d5debae08d3ef237cdb877bd176dce4afeb9200e41293</cites><orcidid>0009-0005-0624-6989 ; 0000-0002-1307-2404 ; 0000-0001-5704-8812 ; 0000-0001-5472-4897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Boyue</creatorcontrib><creatorcontrib>Xie, Mingyun</creatorcontrib><creatorcontrib>Zhang, Xuke</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><title>A mean-error-based time-step control method for detonation simulation</title><title>Physics of fluids (1994)</title><description>To improve the computational efficiency in implicit-explicit (IMEX) algorithms for stiff detonation problems, the Mean Error Time Control (METC) method is proposed. The core of METC is a novel selected full-field error estimation. This method estimates the full-field error by averaging the errors in regions of significant stiffness. An error controller with integral (I) feedback is then used to determine the neighboring time-step ratios to obtain time-steps within the IMEX stability range. This new strategy ensures a larger time-step while maintaining higher simulation accuracy and making the time-step change more smoothly, providing a reasonable approximation of full-field time error. It is been tested on one-dimensional, two-dimensional oblique, and rotating detonation cases. Compared with the fixed Courant–Friedrichs–Lewy number method, the METC method achieves speedup ratios of 1.48–5.60 for all types of detonation problems related to hydrogen fuels, and the speedup ratio is up to 4.67 for hydrocarbon fuels with greater stiffness. The METC method overcomes the inefficiencies caused by too small a time-step in the Proportional–Integral method in multidimensional reaction flows.</description><subject>Algorithms</subject><subject>Control methods</subject><subject>Detonation</subject><subject>Hydrocarbon fuels</subject><subject>Hydrogen fuels</subject><subject>Stiffness</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSEwguZzjxB9jVZUPqRILzJZjX0SqJi62M_DvST9mpnuHR3e6l5B7BgsGgj_XCyg5V5W8IDMGSlMphLg8ZAlUCM6uyU1KWwDguhQzsl4WPdqBYowh0sYm9EXueqQp475wYcgx7CaSv4Mv2hALjzkMNndhKFLXj7tjvCVXrd0lvDvPOfl6WX-u3ujm4_V9tdxQx1SZqdBSO4-qZlVtmbKobOlrj41FUJ5jW3LpfKOkbDyTwjusbIuNLgGwYqXmc_Jw2ruP4WfElM02jHGYThrOOGiuObBJPZ6UiyGliK3Zx6638dcwMIeWTG3OLU326WST6_Lxl3_wH8FWZyY</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Jia, Boyue</creator><creator>Xie, Mingyun</creator><creator>Zhang, Xuke</creator><creator>Zhang, Bin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-0624-6989</orcidid><orcidid>https://orcid.org/0000-0002-1307-2404</orcidid><orcidid>https://orcid.org/0000-0001-5704-8812</orcidid><orcidid>https://orcid.org/0000-0001-5472-4897</orcidid></search><sort><creationdate>202411</creationdate><title>A mean-error-based time-step control method for detonation simulation</title><author>Jia, Boyue ; Xie, Mingyun ; Zhang, Xuke ; Zhang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-6979cde85145a18ae8a2d5debae08d3ef237cdb877bd176dce4afeb9200e41293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Control methods</topic><topic>Detonation</topic><topic>Hydrocarbon fuels</topic><topic>Hydrogen fuels</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Boyue</creatorcontrib><creatorcontrib>Xie, Mingyun</creatorcontrib><creatorcontrib>Zhang, Xuke</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Boyue</au><au>Xie, Mingyun</au><au>Zhang, Xuke</au><au>Zhang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean-error-based time-step control method for detonation simulation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>To improve the computational efficiency in implicit-explicit (IMEX) algorithms for stiff detonation problems, the Mean Error Time Control (METC) method is proposed. The core of METC is a novel selected full-field error estimation. This method estimates the full-field error by averaging the errors in regions of significant stiffness. An error controller with integral (I) feedback is then used to determine the neighboring time-step ratios to obtain time-steps within the IMEX stability range. This new strategy ensures a larger time-step while maintaining higher simulation accuracy and making the time-step change more smoothly, providing a reasonable approximation of full-field time error. It is been tested on one-dimensional, two-dimensional oblique, and rotating detonation cases. Compared with the fixed Courant–Friedrichs–Lewy number method, the METC method achieves speedup ratios of 1.48–5.60 for all types of detonation problems related to hydrogen fuels, and the speedup ratio is up to 4.67 for hydrocarbon fuels with greater stiffness. The METC method overcomes the inefficiencies caused by too small a time-step in the Proportional–Integral method in multidimensional reaction flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0233847</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0005-0624-6989</orcidid><orcidid>https://orcid.org/0000-0002-1307-2404</orcidid><orcidid>https://orcid.org/0000-0001-5704-8812</orcidid><orcidid>https://orcid.org/0000-0001-5472-4897</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-11, Vol.36 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3130939301 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Algorithms Control methods Detonation Hydrocarbon fuels Hydrogen fuels Stiffness |
title | A mean-error-based time-step control method for detonation simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean-error-based%20time-step%20control%20method%20for%20detonation%20simulation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jia,%20Boyue&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0233847&rft_dat=%3Cproquest_cross%3E3130939301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-6979cde85145a18ae8a2d5debae08d3ef237cdb877bd176dce4afeb9200e41293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130939301&rft_id=info:pmid/&rfr_iscdi=true |