Loading…

Wavelet s-Wasserstein distances for 0 < s <= 1

Motivated by classical harmonic analysis results characterizing H\"older spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 < s

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Craig, Katy, Yu, Haoqing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Craig, Katy
Yu, Haoqing
description Motivated by classical harmonic analysis results characterizing H\"older spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 < s
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130963921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130963921</sourcerecordid><originalsourceid>FETCH-proquest_journals_31309639213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC08sS81JLVEo1g1PLC5OLSouSc3MU0jJLC5JzEtOLVZIyy9SMFCwUShWsLFVMORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQ2MDSzNjSyNDY-JUAQBUETCb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130963921</pqid></control><display><type>article</type><title>Wavelet s-Wasserstein distances for 0 &lt; s &lt;= 1</title><source>Publicly Available Content Database</source><creator>Craig, Katy ; Yu, Haoqing</creator><creatorcontrib>Craig, Katy ; Yu, Haoqing</creatorcontrib><description>Motivated by classical harmonic analysis results characterizing H\"older spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 &lt; s &lt;= 1, the s-Wasserstein distance W_s between certain probability measures on Euclidean space is equivalent to a weighted l_1 difference of their wavelet coefficients. We demonstrate that the original statement of this equivalence is incorrect in a few aspects and, furthermore, fails to capture key properties of the W_s distance, such as its behavior under translations of probability measures. Inspired by this, we consider a variant of the previous wavelet distance formula for which equivalence (up to an arbitrarily small error) does hold for 0 &lt; s &lt; 1. We analyze the properties of this distance, one of which is that it provides a natural embedding of the s-Wasserstein space into a linear space. We conclude with several numerical simulations. Even though our theoretical result merely ensures that the new wavelet s-Wasserstein distance is equivalent to the classical W_s distance (up to an error), our numerical simulations show that the new wavelet distance succeeds in capturing the behavior of the exact W_s distance under translations and dilations of probability measures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Equivalence ; Error analysis ; Euclidean geometry ; Euclidean space ; Fourier analysis ; Harmonic analysis ; Translations ; Wavelet analysis</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3130963921?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Craig, Katy</creatorcontrib><creatorcontrib>Yu, Haoqing</creatorcontrib><title>Wavelet s-Wasserstein distances for 0 &lt; s &lt;= 1</title><title>arXiv.org</title><description>Motivated by classical harmonic analysis results characterizing H\"older spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 &lt; s &lt;= 1, the s-Wasserstein distance W_s between certain probability measures on Euclidean space is equivalent to a weighted l_1 difference of their wavelet coefficients. We demonstrate that the original statement of this equivalence is incorrect in a few aspects and, furthermore, fails to capture key properties of the W_s distance, such as its behavior under translations of probability measures. Inspired by this, we consider a variant of the previous wavelet distance formula for which equivalence (up to an arbitrarily small error) does hold for 0 &lt; s &lt; 1. We analyze the properties of this distance, one of which is that it provides a natural embedding of the s-Wasserstein space into a linear space. We conclude with several numerical simulations. Even though our theoretical result merely ensures that the new wavelet s-Wasserstein distance is equivalent to the classical W_s distance (up to an error), our numerical simulations show that the new wavelet distance succeeds in capturing the behavior of the exact W_s distance under translations and dilations of probability measures.</description><subject>Equivalence</subject><subject>Error analysis</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Translations</subject><subject>Wavelet analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC08sS81JLVEo1g1PLC5OLSouSc3MU0jJLC5JzEtOLVZIyy9SMFCwUShWsLFVMORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQ2MDSzNjSyNDY-JUAQBUETCb</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Craig, Katy</creator><creator>Yu, Haoqing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241119</creationdate><title>Wavelet s-Wasserstein distances for 0 &lt; s &lt;= 1</title><author>Craig, Katy ; Yu, Haoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31309639213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Equivalence</topic><topic>Error analysis</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Translations</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Craig, Katy</creatorcontrib><creatorcontrib>Yu, Haoqing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Katy</au><au>Yu, Haoqing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Wavelet s-Wasserstein distances for 0 &lt; s &lt;= 1</atitle><jtitle>arXiv.org</jtitle><date>2024-11-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by classical harmonic analysis results characterizing H\"older spaces in terms of the decay of their wavelet coefficients, we consider wavelet methods for computing s-Wasserstein type distances. Previous work by Sheory (né Shirdhonkar) and Jacobs showed that, for 0 &lt; s &lt;= 1, the s-Wasserstein distance W_s between certain probability measures on Euclidean space is equivalent to a weighted l_1 difference of their wavelet coefficients. We demonstrate that the original statement of this equivalence is incorrect in a few aspects and, furthermore, fails to capture key properties of the W_s distance, such as its behavior under translations of probability measures. Inspired by this, we consider a variant of the previous wavelet distance formula for which equivalence (up to an arbitrarily small error) does hold for 0 &lt; s &lt; 1. We analyze the properties of this distance, one of which is that it provides a natural embedding of the s-Wasserstein space into a linear space. We conclude with several numerical simulations. Even though our theoretical result merely ensures that the new wavelet s-Wasserstein distance is equivalent to the classical W_s distance (up to an error), our numerical simulations show that the new wavelet distance succeeds in capturing the behavior of the exact W_s distance under translations and dilations of probability measures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130963921
source Publicly Available Content Database
subjects Equivalence
Error analysis
Euclidean geometry
Euclidean space
Fourier analysis
Harmonic analysis
Translations
Wavelet analysis
title Wavelet s-Wasserstein distances for 0 < s <= 1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Wavelet%20s-Wasserstein%20distances%20for%200%20%3C%20s%20%3C=%201&rft.jtitle=arXiv.org&rft.au=Craig,%20Katy&rft.date=2024-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130963921%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31309639213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130963921&rft_id=info:pmid/&rfr_iscdi=true