Loading…

The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity

In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that \begin{equation*} \langle\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}[\sigma] , D \rangle > 0 \quad \forall \ D \in \text{Sym}(3)\setminus \{0\} \, , \end{equation*} where \(\frac{\mathrm{D}^{\circ}}{\...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Neff, Patrizio, Husemann, Nina J, Aurélien S Nguetcho Tchakoutio, Korobeynikov, Sergey N, Martin, Robert J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Neff, Patrizio
Husemann, Nina J
Aurélien S Nguetcho Tchakoutio
Korobeynikov, Sergey N
Martin, Robert J
description In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that \begin{equation*} \langle\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}[\sigma] , D \rangle > 0 \quad \forall \ D \in \text{Sym}(3)\setminus \{0\} \, , \end{equation*} where \(\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}\) is any corotational stress rate, \(\sigma\) is the Cauchy stress and \(D = \text{Sym} \, L\), condition \(L= \dot{F} \, F^{-1}\) is the deformation rate tensor. For \(\widehat{\sigma}(\log V) := \sigma (V)\) it is equivalent to the monotonicity (TSTS-M\(^+\)) \begin{equation*} \langle \widehat{\sigma} (\log V_1) - \widehat{\sigma} (\log V_2) , \log V_1 - \log V_2 \rangle > 0 \quad \forall \ V_1, V_2 \in \text{Sym}^{++}(3), \ V_1 \neq V_2 \, . \end{equation*} For hyperelasticity, (CSP) is in general independent of convexity of the mapping \(F \mapsto \mathrm{W}(F)\) or \(U \mapsto \widehat{\mathrm{W}}(U)\). Considering a family of diagonal, homogeneous deformations \(t \mapsto F(t)\) one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young's modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress-stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130964102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130964102</sourcerecordid><originalsourceid>FETCH-proquest_journals_31309641023</originalsourceid><addsrcrecordid>eNqNjV1KQzEQhYMgWLR7GOirhdykrdXXoriAvpeYO-2dkpu5ZiZCd-JyTcUF-HQOnJ_vxsyc991yu3LuzsxFztZat3ly67Wfme_9gBC5sAYlziGBaPigRHqBiUVrCoovV0tKXwiUY8ERs7bmLtQ4XNqgoAiM3NdEcOQCPYXT9esRBh75hBm5CvTYsvEXI-0HSFgLTxQhc06UMRTAFEQpNvqDuT2GJDj_03uzeHvd796XU-HPiqKHM9fSIHLwnbfPm1Vnnf9f6wdteFwh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130964102</pqid></control><display><type>article</type><title>The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Neff, Patrizio ; Husemann, Nina J ; Aurélien S Nguetcho Tchakoutio ; Korobeynikov, Sergey N ; Martin, Robert J</creator><creatorcontrib>Neff, Patrizio ; Husemann, Nina J ; Aurélien S Nguetcho Tchakoutio ; Korobeynikov, Sergey N ; Martin, Robert J</creatorcontrib><description>In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that \begin{equation*} \langle\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}[\sigma] , D \rangle &gt; 0 \quad \forall \ D \in \text{Sym}(3)\setminus \{0\} \, , \end{equation*} where \(\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}\) is any corotational stress rate, \(\sigma\) is the Cauchy stress and \(D = \text{Sym} \, L\), condition \(L= \dot{F} \, F^{-1}\) is the deformation rate tensor. For \(\widehat{\sigma}(\log V) := \sigma (V)\) it is equivalent to the monotonicity (TSTS-M\(^+\)) \begin{equation*} \langle \widehat{\sigma} (\log V_1) - \widehat{\sigma} (\log V_2) , \log V_1 - \log V_2 \rangle &gt; 0 \quad \forall \ V_1, V_2 \in \text{Sym}^{++}(3), \ V_1 \neq V_2 \, . \end{equation*} For hyperelasticity, (CSP) is in general independent of convexity of the mapping \(F \mapsto \mathrm{W}(F)\) or \(U \mapsto \widehat{\mathrm{W}}(U)\). Considering a family of diagonal, homogeneous deformations \(t \mapsto F(t)\) one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young's modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress-stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bulk modulus ; Convexity ; Deformation ; Ellipticity ; Modulus of elasticity ; Stability ; Tensors</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3130964102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Husemann, Nina J</creatorcontrib><creatorcontrib>Aurélien S Nguetcho Tchakoutio</creatorcontrib><creatorcontrib>Korobeynikov, Sergey N</creatorcontrib><creatorcontrib>Martin, Robert J</creatorcontrib><title>The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity</title><title>arXiv.org</title><description>In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that \begin{equation*} \langle\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}[\sigma] , D \rangle &gt; 0 \quad \forall \ D \in \text{Sym}(3)\setminus \{0\} \, , \end{equation*} where \(\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}\) is any corotational stress rate, \(\sigma\) is the Cauchy stress and \(D = \text{Sym} \, L\), condition \(L= \dot{F} \, F^{-1}\) is the deformation rate tensor. For \(\widehat{\sigma}(\log V) := \sigma (V)\) it is equivalent to the monotonicity (TSTS-M\(^+\)) \begin{equation*} \langle \widehat{\sigma} (\log V_1) - \widehat{\sigma} (\log V_2) , \log V_1 - \log V_2 \rangle &gt; 0 \quad \forall \ V_1, V_2 \in \text{Sym}^{++}(3), \ V_1 \neq V_2 \, . \end{equation*} For hyperelasticity, (CSP) is in general independent of convexity of the mapping \(F \mapsto \mathrm{W}(F)\) or \(U \mapsto \widehat{\mathrm{W}}(U)\). Considering a family of diagonal, homogeneous deformations \(t \mapsto F(t)\) one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young's modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress-stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.</description><subject>Bulk modulus</subject><subject>Convexity</subject><subject>Deformation</subject><subject>Ellipticity</subject><subject>Modulus of elasticity</subject><subject>Stability</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjV1KQzEQhYMgWLR7GOirhdykrdXXoriAvpeYO-2dkpu5ZiZCd-JyTcUF-HQOnJ_vxsyc991yu3LuzsxFztZat3ly67Wfme_9gBC5sAYlziGBaPigRHqBiUVrCoovV0tKXwiUY8ERs7bmLtQ4XNqgoAiM3NdEcOQCPYXT9esRBh75hBm5CvTYsvEXI-0HSFgLTxQhc06UMRTAFEQpNvqDuT2GJDj_03uzeHvd796XU-HPiqKHM9fSIHLwnbfPm1Vnnf9f6wdteFwh</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Neff, Patrizio</creator><creator>Husemann, Nina J</creator><creator>Aurélien S Nguetcho Tchakoutio</creator><creator>Korobeynikov, Sergey N</creator><creator>Martin, Robert J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241119</creationdate><title>The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity</title><author>Neff, Patrizio ; Husemann, Nina J ; Aurélien S Nguetcho Tchakoutio ; Korobeynikov, Sergey N ; Martin, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31309641023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk modulus</topic><topic>Convexity</topic><topic>Deformation</topic><topic>Ellipticity</topic><topic>Modulus of elasticity</topic><topic>Stability</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Husemann, Nina J</creatorcontrib><creatorcontrib>Aurélien S Nguetcho Tchakoutio</creatorcontrib><creatorcontrib>Korobeynikov, Sergey N</creatorcontrib><creatorcontrib>Martin, Robert J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neff, Patrizio</au><au>Husemann, Nina J</au><au>Aurélien S Nguetcho Tchakoutio</au><au>Korobeynikov, Sergey N</au><au>Martin, Robert J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity</atitle><jtitle>arXiv.org</jtitle><date>2024-11-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In isotropic nonlinear elasticity the corotational stability postulate (CSP) is the requirement that \begin{equation*} \langle\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}[\sigma] , D \rangle &gt; 0 \quad \forall \ D \in \text{Sym}(3)\setminus \{0\} \, , \end{equation*} where \(\frac{\mathrm{D}^{\circ}}{\mathrm{D} t}\) is any corotational stress rate, \(\sigma\) is the Cauchy stress and \(D = \text{Sym} \, L\), condition \(L= \dot{F} \, F^{-1}\) is the deformation rate tensor. For \(\widehat{\sigma}(\log V) := \sigma (V)\) it is equivalent to the monotonicity (TSTS-M\(^+\)) \begin{equation*} \langle \widehat{\sigma} (\log V_1) - \widehat{\sigma} (\log V_2) , \log V_1 - \log V_2 \rangle &gt; 0 \quad \forall \ V_1, V_2 \in \text{Sym}^{++}(3), \ V_1 \neq V_2 \, . \end{equation*} For hyperelasticity, (CSP) is in general independent of convexity of the mapping \(F \mapsto \mathrm{W}(F)\) or \(U \mapsto \widehat{\mathrm{W}}(U)\). Considering a family of diagonal, homogeneous deformations \(t \mapsto F(t)\) one can, nevertheless, show that (CSP) implies positive incremental Cauchy stress moduli for this deformation family, including the incremental Young's modulus, the incremental equibiaxial modulus, the incremental planar tension modulus and the incremental bulk modulus. Aside, (CSP) is sufficient for the Baker-Ericksen and tension-extension inequality. Moreover, it implies local invertibility of the Cauchy stress-stretch relation. Together, this shows that (CSP) is a reasonable constitutive stability postulate in nonlinear elasticity, complementing local material stability viz. LH-ellipticity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130964102
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bulk modulus
Convexity
Deformation
Ellipticity
Modulus of elasticity
Stability
Tensors
title The corotational stability postulate: positive incremental Cauchy stress moduli for diagonal, homogeneous deformations in isotropic nonlinear elasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20corotational%20stability%20postulate:%20positive%20incremental%20Cauchy%20stress%20moduli%20for%20diagonal,%20homogeneous%20deformations%20in%20isotropic%20nonlinear%20elasticity&rft.jtitle=arXiv.org&rft.au=Neff,%20Patrizio&rft.date=2024-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130964102%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31309641023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130964102&rft_id=info:pmid/&rfr_iscdi=true