Loading…

Beyond the post: an SLR of enterprise artificial intelligence in social media

This study explores the impact of artificial intelligence (AI) on brand communication within corporate social networks, analyzing its benefits, ethical and technical challenges, and proposing responsible implementation strategies enriched with new theoretical contributions. To achieve this, a system...

Full description

Saved in:
Bibliographic Details
Published in:Social network analysis and mining 2024-11, Vol.14 (1), p.219
Main Authors: Maldonado-Canca, Luis-Alfonso, Casado-Molina, Ana-María, Cabrera-Sánchez, Juan-Pedro, Bermúdez-González, Guillermo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 219
container_title Social network analysis and mining
container_volume 14
creator Maldonado-Canca, Luis-Alfonso
Casado-Molina, Ana-María
Cabrera-Sánchez, Juan-Pedro
Bermúdez-González, Guillermo
description This study explores the impact of artificial intelligence (AI) on brand communication within corporate social networks, analyzing its benefits, ethical and technical challenges, and proposing responsible implementation strategies enriched with new theoretical contributions. To achieve this, a systematic literature review (SLR) was conducted based on the SPAR-4-SLR methodology by Paul et al. (2021), using 57 studies from Scopus and Web of Science over the past six years. This approach was complemented with recommendations from Kitchenham and Charters (2007) to ensure rigor and thoroughness in the analysis. The study reveals that artificial intelligence transforms interactions within corporate social networks by enabling effective personalization, optimizing customer experience, and enhancing satisfaction. Benefits include precise segmentation, predictive analytics, and customer service optimization through chatbots. However, significant ethical challenges also emerge, such as data privacy, algorithmic bias, and a lack of transparency in AI models. The necessity for responsible practices and regulations that foster user trust and mitigate risks associated with the implementation of AI in digital communication strategies is emphasized.
doi_str_mv 10.1007/s13278-024-01382-y
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3131030370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131030370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-75b1efe59c9581ffe337d67db6e55d1c35889d78747a6bae997aeeef9f9f794c3</originalsourceid><addsrcrecordid>eNo9T8tKxDAUDaLgMM4PuAq4jt70Ni93OviCiuBjPaTtjWaoTW06i_l7i4qcxXkszuEwdirhXAKYiyyxMFZAUQqQaAuxP2ALabUTqtTu8F8rOGarnLcAIAHRgV6wx2vap77l0wfxIeXpkvuev1TPPAVO_UTjMMZM3I9TDLGJvuNxTrsuvlPf0Gx4Tj_xJ7XRn7Cj4LtMqz9esrfbm9f1vaie7h7WV5VoirKchFG1pEDKNU5ZGQIhmlabttakVCsbVNa61lhTGq9rT84ZT0TBzTCubHDJzn57hzF97ShPm23ajf08uUGJ8zlAA_gNxB1Rgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131030370</pqid></control><display><type>article</type><title>Beyond the post: an SLR of enterprise artificial intelligence in social media</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><source>Springer Link</source><creator>Maldonado-Canca, Luis-Alfonso ; Casado-Molina, Ana-María ; Cabrera-Sánchez, Juan-Pedro ; Bermúdez-González, Guillermo</creator><creatorcontrib>Maldonado-Canca, Luis-Alfonso ; Casado-Molina, Ana-María ; Cabrera-Sánchez, Juan-Pedro ; Bermúdez-González, Guillermo</creatorcontrib><description>This study explores the impact of artificial intelligence (AI) on brand communication within corporate social networks, analyzing its benefits, ethical and technical challenges, and proposing responsible implementation strategies enriched with new theoretical contributions. To achieve this, a systematic literature review (SLR) was conducted based on the SPAR-4-SLR methodology by Paul et al. (2021), using 57 studies from Scopus and Web of Science over the past six years. This approach was complemented with recommendations from Kitchenham and Charters (2007) to ensure rigor and thoroughness in the analysis. The study reveals that artificial intelligence transforms interactions within corporate social networks by enabling effective personalization, optimizing customer experience, and enhancing satisfaction. Benefits include precise segmentation, predictive analytics, and customer service optimization through chatbots. However, significant ethical challenges also emerge, such as data privacy, algorithmic bias, and a lack of transparency in AI models. The necessity for responsible practices and regulations that foster user trust and mitigate risks associated with the implementation of AI in digital communication strategies is emphasized.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-024-01382-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Advertising ; Algorithms ; Artificial ; Artificial intelligence ; Bias ; Brands ; Charters ; Chatbots ; Communication ; Communication strategies ; Customer satisfaction ; Customer services ; Customization ; Digital marketing ; Efficiency ; Ethical dilemmas ; Ethics ; Impact analysis ; Literature reviews ; Market strategy ; Mass media ; Optimization ; Privacy ; Quality of service ; Real time ; Regulation ; Reputation management ; Segmentation ; Social media ; Social networks ; Transparency</subject><ispartof>Social network analysis and mining, 2024-11, Vol.14 (1), p.219</ispartof><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3131030370?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,12845,21392,27922,27923,33221,33609,43731</link.rule.ids></links><search><creatorcontrib>Maldonado-Canca, Luis-Alfonso</creatorcontrib><creatorcontrib>Casado-Molina, Ana-María</creatorcontrib><creatorcontrib>Cabrera-Sánchez, Juan-Pedro</creatorcontrib><creatorcontrib>Bermúdez-González, Guillermo</creatorcontrib><title>Beyond the post: an SLR of enterprise artificial intelligence in social media</title><title>Social network analysis and mining</title><description>This study explores the impact of artificial intelligence (AI) on brand communication within corporate social networks, analyzing its benefits, ethical and technical challenges, and proposing responsible implementation strategies enriched with new theoretical contributions. To achieve this, a systematic literature review (SLR) was conducted based on the SPAR-4-SLR methodology by Paul et al. (2021), using 57 studies from Scopus and Web of Science over the past six years. This approach was complemented with recommendations from Kitchenham and Charters (2007) to ensure rigor and thoroughness in the analysis. The study reveals that artificial intelligence transforms interactions within corporate social networks by enabling effective personalization, optimizing customer experience, and enhancing satisfaction. Benefits include precise segmentation, predictive analytics, and customer service optimization through chatbots. However, significant ethical challenges also emerge, such as data privacy, algorithmic bias, and a lack of transparency in AI models. The necessity for responsible practices and regulations that foster user trust and mitigate risks associated with the implementation of AI in digital communication strategies is emphasized.</description><subject>Advertising</subject><subject>Algorithms</subject><subject>Artificial</subject><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Brands</subject><subject>Charters</subject><subject>Chatbots</subject><subject>Communication</subject><subject>Communication strategies</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Customization</subject><subject>Digital marketing</subject><subject>Efficiency</subject><subject>Ethical dilemmas</subject><subject>Ethics</subject><subject>Impact analysis</subject><subject>Literature reviews</subject><subject>Market strategy</subject><subject>Mass media</subject><subject>Optimization</subject><subject>Privacy</subject><subject>Quality of service</subject><subject>Real time</subject><subject>Regulation</subject><subject>Reputation management</subject><subject>Segmentation</subject><subject>Social media</subject><subject>Social networks</subject><subject>Transparency</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNo9T8tKxDAUDaLgMM4PuAq4jt70Ni93OviCiuBjPaTtjWaoTW06i_l7i4qcxXkszuEwdirhXAKYiyyxMFZAUQqQaAuxP2ALabUTqtTu8F8rOGarnLcAIAHRgV6wx2vap77l0wfxIeXpkvuev1TPPAVO_UTjMMZM3I9TDLGJvuNxTrsuvlPf0Gx4Tj_xJ7XRn7Cj4LtMqz9esrfbm9f1vaie7h7WV5VoirKchFG1pEDKNU5ZGQIhmlabttakVCsbVNa61lhTGq9rT84ZT0TBzTCubHDJzn57hzF97ShPm23ajf08uUGJ8zlAA_gNxB1Rgg</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Maldonado-Canca, Luis-Alfonso</creator><creator>Casado-Molina, Ana-María</creator><creator>Cabrera-Sánchez, Juan-Pedro</creator><creator>Bermúdez-González, Guillermo</creator><general>Springer Nature B.V</general><scope>0-V</scope><scope>3V.</scope><scope>7X5</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20241120</creationdate><title>Beyond the post: an SLR of enterprise artificial intelligence in social media</title><author>Maldonado-Canca, Luis-Alfonso ; Casado-Molina, Ana-María ; Cabrera-Sánchez, Juan-Pedro ; Bermúdez-González, Guillermo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-75b1efe59c9581ffe337d67db6e55d1c35889d78747a6bae997aeeef9f9f794c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advertising</topic><topic>Algorithms</topic><topic>Artificial</topic><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Brands</topic><topic>Charters</topic><topic>Chatbots</topic><topic>Communication</topic><topic>Communication strategies</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Customization</topic><topic>Digital marketing</topic><topic>Efficiency</topic><topic>Ethical dilemmas</topic><topic>Ethics</topic><topic>Impact analysis</topic><topic>Literature reviews</topic><topic>Market strategy</topic><topic>Mass media</topic><topic>Optimization</topic><topic>Privacy</topic><topic>Quality of service</topic><topic>Real time</topic><topic>Regulation</topic><topic>Reputation management</topic><topic>Segmentation</topic><topic>Social media</topic><topic>Social networks</topic><topic>Transparency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldonado-Canca, Luis-Alfonso</creatorcontrib><creatorcontrib>Casado-Molina, Ana-María</creatorcontrib><creatorcontrib>Cabrera-Sánchez, Juan-Pedro</creatorcontrib><creatorcontrib>Bermúdez-González, Guillermo</creatorcontrib><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Entrepreneurship</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldonado-Canca, Luis-Alfonso</au><au>Casado-Molina, Ana-María</au><au>Cabrera-Sánchez, Juan-Pedro</au><au>Bermúdez-González, Guillermo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond the post: an SLR of enterprise artificial intelligence in social media</atitle><jtitle>Social network analysis and mining</jtitle><date>2024-11-20</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>219</spage><pages>219-</pages><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>This study explores the impact of artificial intelligence (AI) on brand communication within corporate social networks, analyzing its benefits, ethical and technical challenges, and proposing responsible implementation strategies enriched with new theoretical contributions. To achieve this, a systematic literature review (SLR) was conducted based on the SPAR-4-SLR methodology by Paul et al. (2021), using 57 studies from Scopus and Web of Science over the past six years. This approach was complemented with recommendations from Kitchenham and Charters (2007) to ensure rigor and thoroughness in the analysis. The study reveals that artificial intelligence transforms interactions within corporate social networks by enabling effective personalization, optimizing customer experience, and enhancing satisfaction. Benefits include precise segmentation, predictive analytics, and customer service optimization through chatbots. However, significant ethical challenges also emerge, such as data privacy, algorithmic bias, and a lack of transparency in AI models. The necessity for responsible practices and regulations that foster user trust and mitigate risks associated with the implementation of AI in digital communication strategies is emphasized.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13278-024-01382-y</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2024-11, Vol.14 (1), p.219
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_3131030370
source International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection; Springer Link
subjects Advertising
Algorithms
Artificial
Artificial intelligence
Bias
Brands
Charters
Chatbots
Communication
Communication strategies
Customer satisfaction
Customer services
Customization
Digital marketing
Efficiency
Ethical dilemmas
Ethics
Impact analysis
Literature reviews
Market strategy
Mass media
Optimization
Privacy
Quality of service
Real time
Regulation
Reputation management
Segmentation
Social media
Social networks
Transparency
title Beyond the post: an SLR of enterprise artificial intelligence in social media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20the%20post:%20an%20SLR%20of%20enterprise%20artificial%20intelligence%20in%20social%20media&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=Maldonado-Canca,%20Luis-Alfonso&rft.date=2024-11-20&rft.volume=14&rft.issue=1&rft.spage=219&rft.pages=219-&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-024-01382-y&rft_dat=%3Cproquest%3E3131030370%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-75b1efe59c9581ffe337d67db6e55d1c35889d78747a6bae997aeeef9f9f794c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131030370&rft_id=info:pmid/&rfr_iscdi=true