Loading…

Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell

For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2024-11, Vol.16 (45), p.212-211
Main Authors: Sloboda, Tamara, Kammlander, Birgit, Berggren, Elin, Riva, Stefania, Giangrisostomi, Erika, Ovsyannikov, Ruslan, Rensmo, Håkan, Lindblad, Andreas, Cappel, Ute B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43
container_end_page 211
container_issue 45
container_start_page 212
container_title Nanoscale
container_volume 16
creator Sloboda, Tamara
Kammlander, Birgit
Berggren, Elin
Riva, Stefania
Giangrisostomi, Erika
Ovsyannikov, Ruslan
Rensmo, Håkan
Lindblad, Andreas
Cappel, Ute B
description For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms. The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.
doi_str_mv 10.1039/d4nr03428g
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_3131078246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131078246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</originalsourceid><addsrcrecordid>eNpd0U1rFTEUBuBBFFtbN-6VQDcijiY5mcxkWVqthaLFr23IJOdep8wk03xU-u-d21tvoZskkIeXc3ir6hWjHxgF9dEJHykI3q2fVPucCloDtPzp7i3FXvUipStKpQIJz6s9UAKaVtL9aj73GePKWKwjpjDeoCPzn5DDTRizWSNZo8do8hA8cbfeTINNxHhH-s2Rciw2l4gEF1_u1OCJIZf9D3JdjM9lIi5ksiSbSCyO42H1bGXGhC_v74Pq1-dPP0--1Bffzs5Pji9qyyXkWnYAjqMQVChGbYeOG8qlUq3jnAnWSnCMUd53fdsxo7rWNcr2koFRBoyAg-r9Njf9xbn0eo7DZOKtDmbQp8PvYx3iWpeiG0Hbpln42y2fY7gumLKehrSZ13gMJWlgTDHFATb06BG9CiX6ZZlFAaNtx4Vc1LutsjGkFHG1m4BRvalNn4qv3-9qO1vwm_vI0k_odvR_Twt4vQUx2d3vQ-_wD4aOnCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131078246</pqid></control><display><type>article</type><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><source>Royal Society of Chemistry</source><creator>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</creator><creatorcontrib>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</creatorcontrib><description>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms. The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr03428g</identifier><identifier>PMID: 39435760</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Band structure of solids ; Dynamic structural analysis ; Lead sulfides ; Nanomaterials ; Photoelectrons ; Photovoltaic cells ; Quantum dots ; Separation ; Solar cells ; Thickness</subject><ispartof>Nanoscale, 2024-11, Vol.16 (45), p.212-211</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</cites><orcidid>0000-0002-7390-3062 ; 0000-0002-9188-9604 ; 0000-0001-8449-1166 ; 0000-0002-9432-3112 ; 0000-0001-8693-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39435760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-540755$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Riva, Stefania</creatorcontrib><creatorcontrib>Giangrisostomi, Erika</creatorcontrib><creatorcontrib>Ovsyannikov, Ruslan</creatorcontrib><creatorcontrib>Rensmo, Håkan</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms. The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</description><subject>Band structure of solids</subject><subject>Dynamic structural analysis</subject><subject>Lead sulfides</subject><subject>Nanomaterials</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Thickness</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1rFTEUBuBBFFtbN-6VQDcijiY5mcxkWVqthaLFr23IJOdep8wk03xU-u-d21tvoZskkIeXc3ir6hWjHxgF9dEJHykI3q2fVPucCloDtPzp7i3FXvUipStKpQIJz6s9UAKaVtL9aj73GePKWKwjpjDeoCPzn5DDTRizWSNZo8do8hA8cbfeTINNxHhH-s2Rciw2l4gEF1_u1OCJIZf9D3JdjM9lIi5ksiSbSCyO42H1bGXGhC_v74Pq1-dPP0--1Bffzs5Pji9qyyXkWnYAjqMQVChGbYeOG8qlUq3jnAnWSnCMUd53fdsxo7rWNcr2koFRBoyAg-r9Njf9xbn0eo7DZOKtDmbQp8PvYx3iWpeiG0Hbpln42y2fY7gumLKehrSZ13gMJWlgTDHFATb06BG9CiX6ZZlFAaNtx4Vc1LutsjGkFHG1m4BRvalNn4qv3-9qO1vwm_vI0k_odvR_Twt4vQUx2d3vQ-_wD4aOnCE</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Sloboda, Tamara</creator><creator>Kammlander, Birgit</creator><creator>Berggren, Elin</creator><creator>Riva, Stefania</creator><creator>Giangrisostomi, Erika</creator><creator>Ovsyannikov, Ruslan</creator><creator>Rensmo, Håkan</creator><creator>Lindblad, Andreas</creator><creator>Cappel, Ute B</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7390-3062</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid><orcidid>https://orcid.org/0000-0001-8449-1166</orcidid><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid></search><sort><creationdate>20241121</creationdate><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><author>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure of solids</topic><topic>Dynamic structural analysis</topic><topic>Lead sulfides</topic><topic>Nanomaterials</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Riva, Stefania</creatorcontrib><creatorcontrib>Giangrisostomi, Erika</creatorcontrib><creatorcontrib>Ovsyannikov, Ruslan</creatorcontrib><creatorcontrib>Rensmo, Håkan</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sloboda, Tamara</au><au>Kammlander, Birgit</au><au>Berggren, Elin</au><au>Riva, Stefania</au><au>Giangrisostomi, Erika</au><au>Ovsyannikov, Ruslan</au><au>Rensmo, Håkan</au><au>Lindblad, Andreas</au><au>Cappel, Ute B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-11-21</date><risdate>2024</risdate><volume>16</volume><issue>45</issue><spage>212</spage><epage>211</epage><pages>212-211</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms. The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39435760</pmid><doi>10.1039/d4nr03428g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7390-3062</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid><orcidid>https://orcid.org/0000-0001-8449-1166</orcidid><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-11, Vol.16 (45), p.212-211
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_journals_3131078246
source Royal Society of Chemistry
subjects Band structure of solids
Dynamic structural analysis
Lead sulfides
Nanomaterials
Photoelectrons
Photovoltaic cells
Quantum dots
Separation
Solar cells
Thickness
title Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-resolved%20photovoltage%20generation%20dynamics%20and%20band%20structure%20evolution%20in%20a%20PbS%20quantum%20dot%20solar%20cell&rft.jtitle=Nanoscale&rft.au=Sloboda,%20Tamara&rft.date=2024-11-21&rft.volume=16&rft.issue=45&rft.spage=212&rft.epage=211&rft.pages=212-211&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr03428g&rft_dat=%3Cproquest_swepu%3E3131078246%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131078246&rft_id=info:pmid/39435760&rfr_iscdi=true