Loading…
Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell
For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide...
Saved in:
Published in: | Nanoscale 2024-11, Vol.16 (45), p.212-211 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43 |
container_end_page | 211 |
container_issue | 45 |
container_start_page | 212 |
container_title | Nanoscale |
container_volume | 16 |
creator | Sloboda, Tamara Kammlander, Birgit Berggren, Elin Riva, Stefania Giangrisostomi, Erika Ovsyannikov, Ruslan Rensmo, Håkan Lindblad, Andreas Cappel, Ute B |
description | For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms.
The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy. |
doi_str_mv | 10.1039/d4nr03428g |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_3131078246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131078246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</originalsourceid><addsrcrecordid>eNpd0U1rFTEUBuBBFFtbN-6VQDcijiY5mcxkWVqthaLFr23IJOdep8wk03xU-u-d21tvoZskkIeXc3ir6hWjHxgF9dEJHykI3q2fVPucCloDtPzp7i3FXvUipStKpQIJz6s9UAKaVtL9aj73GePKWKwjpjDeoCPzn5DDTRizWSNZo8do8hA8cbfeTINNxHhH-s2Rciw2l4gEF1_u1OCJIZf9D3JdjM9lIi5ksiSbSCyO42H1bGXGhC_v74Pq1-dPP0--1Bffzs5Pji9qyyXkWnYAjqMQVChGbYeOG8qlUq3jnAnWSnCMUd53fdsxo7rWNcr2koFRBoyAg-r9Njf9xbn0eo7DZOKtDmbQp8PvYx3iWpeiG0Hbpln42y2fY7gumLKehrSZ13gMJWlgTDHFATb06BG9CiX6ZZlFAaNtx4Vc1LutsjGkFHG1m4BRvalNn4qv3-9qO1vwm_vI0k_odvR_Twt4vQUx2d3vQ-_wD4aOnCE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131078246</pqid></control><display><type>article</type><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><source>Royal Society of Chemistry</source><creator>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</creator><creatorcontrib>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</creatorcontrib><description>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms.
The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr03428g</identifier><identifier>PMID: 39435760</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Band structure of solids ; Dynamic structural analysis ; Lead sulfides ; Nanomaterials ; Photoelectrons ; Photovoltaic cells ; Quantum dots ; Separation ; Solar cells ; Thickness</subject><ispartof>Nanoscale, 2024-11, Vol.16 (45), p.212-211</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</cites><orcidid>0000-0002-7390-3062 ; 0000-0002-9188-9604 ; 0000-0001-8449-1166 ; 0000-0002-9432-3112 ; 0000-0001-8693-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39435760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-540755$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Riva, Stefania</creatorcontrib><creatorcontrib>Giangrisostomi, Erika</creatorcontrib><creatorcontrib>Ovsyannikov, Ruslan</creatorcontrib><creatorcontrib>Rensmo, Håkan</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms.
The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</description><subject>Band structure of solids</subject><subject>Dynamic structural analysis</subject><subject>Lead sulfides</subject><subject>Nanomaterials</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Thickness</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0U1rFTEUBuBBFFtbN-6VQDcijiY5mcxkWVqthaLFr23IJOdep8wk03xU-u-d21tvoZskkIeXc3ir6hWjHxgF9dEJHykI3q2fVPucCloDtPzp7i3FXvUipStKpQIJz6s9UAKaVtL9aj73GePKWKwjpjDeoCPzn5DDTRizWSNZo8do8hA8cbfeTINNxHhH-s2Rciw2l4gEF1_u1OCJIZf9D3JdjM9lIi5ksiSbSCyO42H1bGXGhC_v74Pq1-dPP0--1Bffzs5Pji9qyyXkWnYAjqMQVChGbYeOG8qlUq3jnAnWSnCMUd53fdsxo7rWNcr2koFRBoyAg-r9Njf9xbn0eo7DZOKtDmbQp8PvYx3iWpeiG0Hbpln42y2fY7gumLKehrSZ13gMJWlgTDHFATb06BG9CiX6ZZlFAaNtx4Vc1LutsjGkFHG1m4BRvalNn4qv3-9qO1vwm_vI0k_odvR_Twt4vQUx2d3vQ-_wD4aOnCE</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Sloboda, Tamara</creator><creator>Kammlander, Birgit</creator><creator>Berggren, Elin</creator><creator>Riva, Stefania</creator><creator>Giangrisostomi, Erika</creator><creator>Ovsyannikov, Ruslan</creator><creator>Rensmo, Håkan</creator><creator>Lindblad, Andreas</creator><creator>Cappel, Ute B</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-7390-3062</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid><orcidid>https://orcid.org/0000-0001-8449-1166</orcidid><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid></search><sort><creationdate>20241121</creationdate><title>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</title><author>Sloboda, Tamara ; Kammlander, Birgit ; Berggren, Elin ; Riva, Stefania ; Giangrisostomi, Erika ; Ovsyannikov, Ruslan ; Rensmo, Håkan ; Lindblad, Andreas ; Cappel, Ute B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band structure of solids</topic><topic>Dynamic structural analysis</topic><topic>Lead sulfides</topic><topic>Nanomaterials</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sloboda, Tamara</creatorcontrib><creatorcontrib>Kammlander, Birgit</creatorcontrib><creatorcontrib>Berggren, Elin</creatorcontrib><creatorcontrib>Riva, Stefania</creatorcontrib><creatorcontrib>Giangrisostomi, Erika</creatorcontrib><creatorcontrib>Ovsyannikov, Ruslan</creatorcontrib><creatorcontrib>Rensmo, Håkan</creatorcontrib><creatorcontrib>Lindblad, Andreas</creatorcontrib><creatorcontrib>Cappel, Ute B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sloboda, Tamara</au><au>Kammlander, Birgit</au><au>Berggren, Elin</au><au>Riva, Stefania</au><au>Giangrisostomi, Erika</au><au>Ovsyannikov, Ruslan</au><au>Rensmo, Håkan</au><au>Lindblad, Andreas</au><au>Cappel, Ute B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-11-21</date><risdate>2024</risdate><volume>16</volume><issue>45</issue><spage>212</spage><epage>211</epage><pages>212-211</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>For directed development of solar cells using nanomaterials such as quantum dots, there is a need to understand the device function in detail. Understanding where photovoltage is generated in a device and where energy losses occur is a key aspect of this, and development of methods which can provide this information is needed. We have previously shown that time-resolved photoelectron spectroscopy of core levels can be used to follow the photovoltage dynamics at a specific interface of a lead sulfide quantum dot solar cell. Here, we use the method's selectivity and sample design to investigate the photovoltage generation in different parts of this solar cell and determine how the different layers (including the absorber layer thickness) contribute to charge separation. We show that all layers contribute to photovoltage generation and that a gold contact deposited on the quantum dots is necessary for full photovoltage generation and slow charge recombination. By combining the information obtained, we are able to experimentally follow the time evolution of the solar cell band structure during the charge separation process. Furthermore, we can identify which specific layers need to be optimized for an overall improvement of quantum dot cells. In the future, this methodology can be applied to other types of devices to provide insights into photovoltage generation mechanisms.
The charge separation and recombination dynamics at different interfaces in a quantum dot solar cell are investigated by time-resolved photoelectron spectroscopy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39435760</pmid><doi>10.1039/d4nr03428g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7390-3062</orcidid><orcidid>https://orcid.org/0000-0002-9188-9604</orcidid><orcidid>https://orcid.org/0000-0001-8449-1166</orcidid><orcidid>https://orcid.org/0000-0002-9432-3112</orcidid><orcidid>https://orcid.org/0000-0001-8693-0492</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-11, Vol.16 (45), p.212-211 |
issn | 2040-3364 2040-3372 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_3131078246 |
source | Royal Society of Chemistry |
subjects | Band structure of solids Dynamic structural analysis Lead sulfides Nanomaterials Photoelectrons Photovoltaic cells Quantum dots Separation Solar cells Thickness |
title | Interface-resolved photovoltage generation dynamics and band structure evolution in a PbS quantum dot solar cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface-resolved%20photovoltage%20generation%20dynamics%20and%20band%20structure%20evolution%20in%20a%20PbS%20quantum%20dot%20solar%20cell&rft.jtitle=Nanoscale&rft.au=Sloboda,%20Tamara&rft.date=2024-11-21&rft.volume=16&rft.issue=45&rft.spage=212&rft.epage=211&rft.pages=212-211&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr03428g&rft_dat=%3Cproquest_swepu%3E3131078246%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-6833d2e4404910c8ed2a026997d22141763d1102b8b781a987d59cb613a9a3a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131078246&rft_id=info:pmid/39435760&rfr_iscdi=true |