Loading…
The entrainment hypothesis – 80 years old and still going strong
The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental enginee...
Saved in:
Published in: | Journal of fluid mechanics 2024-11, Vol.1000, Article F2 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 1000 |
creator | Cenedese, Claudia |
description | The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid. |
doi_str_mv | 10.1017/jfm.2024.862 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131576713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_862</cupid><sourcerecordid>3131576713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EEqWw4wCW2JIw_oldL6GigFSJTVlbTuykqZK42OmiO-7ADTkJrlqJDatvpHnzjfQQuiWQEyDyYVP3OQXK85mgZ2hCuFCZFLw4RxMASjNCKFyiqxg3AISBkhP0tFo77IYxmHboU-L1fuvHtYttxD9f33gGeO9MiNh3FpvB4ji2XYcb3w5NmoMfmmt0UZsuuptTTtHH4nk1f82W7y9v88dlVlEqx4wS5qpKlVxVyoJkFmZlwatSmAo4A0cUJ6qs0wYKJ0rKhRNMFJYzwcEwy6bo7ti7Df5z5-KoN34XhvRSM8JIIYUkLFH3R6oKPsbgar0NbW_CXhPQB0s6WdIHSzpZSnh-wk1fhtY27q_134NfJqBoug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131576713</pqid></control><display><type>article</type><title>The entrainment hypothesis – 80 years old and still going strong</title><source>Cambridge University Press</source><creator>Cenedese, Claudia</creator><creatorcontrib>Cenedese, Claudia</creatorcontrib><description>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.862</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Convective clouds ; Dense water ; Entrainment ; Environmental engineering ; Fluid flow ; Fluid mechanics ; Focus on Fluids ; General circulation models ; Geophysical fluids ; Hypotheses ; Inflow ; Interfaces ; JFM Volume 1000 ; Lava ; Magma ; Magma chambers ; Mathematical models ; Ocean currents ; Oceanic turbulence ; Plumes ; Turbidity ; Turbidity currents ; Turbulence ; Turbulent flow ; Velocity ; Volcanic eruptions ; Volcanoes ; Water currents</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.1000, Article F2</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</cites><orcidid>0000-0002-2959-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024008620/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Cenedese, Claudia</creatorcontrib><title>The entrainment hypothesis – 80 years old and still going strong</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</description><subject>Convective clouds</subject><subject>Dense water</subject><subject>Entrainment</subject><subject>Environmental engineering</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Focus on Fluids</subject><subject>General circulation models</subject><subject>Geophysical fluids</subject><subject>Hypotheses</subject><subject>Inflow</subject><subject>Interfaces</subject><subject>JFM Volume 1000</subject><subject>Lava</subject><subject>Magma</subject><subject>Magma chambers</subject><subject>Mathematical models</subject><subject>Ocean currents</subject><subject>Oceanic turbulence</subject><subject>Plumes</subject><subject>Turbidity</subject><subject>Turbidity currents</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water currents</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQRi0EEqWw4wCW2JIw_oldL6GigFSJTVlbTuykqZK42OmiO-7ADTkJrlqJDatvpHnzjfQQuiWQEyDyYVP3OQXK85mgZ2hCuFCZFLw4RxMASjNCKFyiqxg3AISBkhP0tFo77IYxmHboU-L1fuvHtYttxD9f33gGeO9MiNh3FpvB4ji2XYcb3w5NmoMfmmt0UZsuuptTTtHH4nk1f82W7y9v88dlVlEqx4wS5qpKlVxVyoJkFmZlwatSmAo4A0cUJ6qs0wYKJ0rKhRNMFJYzwcEwy6bo7ti7Df5z5-KoN34XhvRSM8JIIYUkLFH3R6oKPsbgar0NbW_CXhPQB0s6WdIHSzpZSnh-wk1fhtY27q_134NfJqBoug</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Cenedese, Claudia</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2959-0468</orcidid></search><sort><creationdate>20241122</creationdate><title>The entrainment hypothesis – 80 years old and still going strong</title><author>Cenedese, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convective clouds</topic><topic>Dense water</topic><topic>Entrainment</topic><topic>Environmental engineering</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Focus on Fluids</topic><topic>General circulation models</topic><topic>Geophysical fluids</topic><topic>Hypotheses</topic><topic>Inflow</topic><topic>Interfaces</topic><topic>JFM Volume 1000</topic><topic>Lava</topic><topic>Magma</topic><topic>Magma chambers</topic><topic>Mathematical models</topic><topic>Ocean currents</topic><topic>Oceanic turbulence</topic><topic>Plumes</topic><topic>Turbidity</topic><topic>Turbidity currents</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenedese, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenedese, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The entrainment hypothesis – 80 years old and still going strong</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>1000</volume><artnum>F2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.862</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2959-0468</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-11, Vol.1000, Article F2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3131576713 |
source | Cambridge University Press |
subjects | Convective clouds Dense water Entrainment Environmental engineering Fluid flow Fluid mechanics Focus on Fluids General circulation models Geophysical fluids Hypotheses Inflow Interfaces JFM Volume 1000 Lava Magma Magma chambers Mathematical models Ocean currents Oceanic turbulence Plumes Turbidity Turbidity currents Turbulence Turbulent flow Velocity Volcanic eruptions Volcanoes Water currents |
title | The entrainment hypothesis – 80 years old and still going strong |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20entrainment%20hypothesis%20%E2%80%93%2080%20years%20old%20and%20still%20going%20strong&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Cenedese,%20Claudia&rft.date=2024-11-22&rft.volume=1000&rft.artnum=F2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.862&rft_dat=%3Cproquest_cross%3E3131576713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131576713&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_862&rfr_iscdi=true |