Loading…

The entrainment hypothesis – 80 years old and still going strong

The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental enginee...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2024-11, Vol.1000, Article F2
Main Author: Cenedese, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 1000
creator Cenedese, Claudia
description The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.
doi_str_mv 10.1017/jfm.2024.862
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131576713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_862</cupid><sourcerecordid>3131576713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</originalsourceid><addsrcrecordid>eNptkE1OwzAQRi0EEqWw4wCW2JIw_oldL6GigFSJTVlbTuykqZK42OmiO-7ADTkJrlqJDatvpHnzjfQQuiWQEyDyYVP3OQXK85mgZ2hCuFCZFLw4RxMASjNCKFyiqxg3AISBkhP0tFo77IYxmHboU-L1fuvHtYttxD9f33gGeO9MiNh3FpvB4ji2XYcb3w5NmoMfmmt0UZsuuptTTtHH4nk1f82W7y9v88dlVlEqx4wS5qpKlVxVyoJkFmZlwatSmAo4A0cUJ6qs0wYKJ0rKhRNMFJYzwcEwy6bo7ti7Df5z5-KoN34XhvRSM8JIIYUkLFH3R6oKPsbgar0NbW_CXhPQB0s6WdIHSzpZSnh-wk1fhtY27q_134NfJqBoug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131576713</pqid></control><display><type>article</type><title>The entrainment hypothesis – 80 years old and still going strong</title><source>Cambridge University Press</source><creator>Cenedese, Claudia</creator><creatorcontrib>Cenedese, Claudia</creatorcontrib><description>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.862</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Convective clouds ; Dense water ; Entrainment ; Environmental engineering ; Fluid flow ; Fluid mechanics ; Focus on Fluids ; General circulation models ; Geophysical fluids ; Hypotheses ; Inflow ; Interfaces ; JFM Volume 1000 ; Lava ; Magma ; Magma chambers ; Mathematical models ; Ocean currents ; Oceanic turbulence ; Plumes ; Turbidity ; Turbidity currents ; Turbulence ; Turbulent flow ; Velocity ; Volcanic eruptions ; Volcanoes ; Water currents</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.1000, Article F2</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</cites><orcidid>0000-0002-2959-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024008620/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Cenedese, Claudia</creatorcontrib><title>The entrainment hypothesis – 80 years old and still going strong</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</description><subject>Convective clouds</subject><subject>Dense water</subject><subject>Entrainment</subject><subject>Environmental engineering</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Focus on Fluids</subject><subject>General circulation models</subject><subject>Geophysical fluids</subject><subject>Hypotheses</subject><subject>Inflow</subject><subject>Interfaces</subject><subject>JFM Volume 1000</subject><subject>Lava</subject><subject>Magma</subject><subject>Magma chambers</subject><subject>Mathematical models</subject><subject>Ocean currents</subject><subject>Oceanic turbulence</subject><subject>Plumes</subject><subject>Turbidity</subject><subject>Turbidity currents</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Volcanic eruptions</subject><subject>Volcanoes</subject><subject>Water currents</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQRi0EEqWw4wCW2JIw_oldL6GigFSJTVlbTuykqZK42OmiO-7ADTkJrlqJDatvpHnzjfQQuiWQEyDyYVP3OQXK85mgZ2hCuFCZFLw4RxMASjNCKFyiqxg3AISBkhP0tFo77IYxmHboU-L1fuvHtYttxD9f33gGeO9MiNh3FpvB4ji2XYcb3w5NmoMfmmt0UZsuuptTTtHH4nk1f82W7y9v88dlVlEqx4wS5qpKlVxVyoJkFmZlwatSmAo4A0cUJ6qs0wYKJ0rKhRNMFJYzwcEwy6bo7ti7Df5z5-KoN34XhvRSM8JIIYUkLFH3R6oKPsbgar0NbW_CXhPQB0s6WdIHSzpZSnh-wk1fhtY27q_134NfJqBoug</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Cenedese, Claudia</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2959-0468</orcidid></search><sort><creationdate>20241122</creationdate><title>The entrainment hypothesis – 80 years old and still going strong</title><author>Cenedese, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convective clouds</topic><topic>Dense water</topic><topic>Entrainment</topic><topic>Environmental engineering</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Focus on Fluids</topic><topic>General circulation models</topic><topic>Geophysical fluids</topic><topic>Hypotheses</topic><topic>Inflow</topic><topic>Interfaces</topic><topic>JFM Volume 1000</topic><topic>Lava</topic><topic>Magma</topic><topic>Magma chambers</topic><topic>Mathematical models</topic><topic>Ocean currents</topic><topic>Oceanic turbulence</topic><topic>Plumes</topic><topic>Turbidity</topic><topic>Turbidity currents</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Volcanic eruptions</topic><topic>Volcanoes</topic><topic>Water currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenedese, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenedese, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The entrainment hypothesis – 80 years old and still going strong</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>1000</volume><artnum>F2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The entrainment hypothesis states that the mean inflow velocity across the boundary of a turbulent flow is proportional to a characteristic velocity of the flow. Proposed by G. I. Taylor approximately 80 years ago, it is still a common model of turbulence closure widely used in environmental engineering and geophysical fluid mechanics. Although it is a very simple concept and mathematical model, it has proven to be able to predict the entrainment in a variety of geophysical flows, e.g. convective clouds and plumes from erupting volcanoes in the atmosphere; dense water overflows and turbidity currents in the ocean; magma injection in a magma chamber in the interior of the Earth, to name just a few. In a seminal paper, Turner (J. Fluid Mech., vol. 173, 1986, pp. 431–471) presents a variety of laboratory and geophysical flows to illustrate the success of the entrainment hypothesis and discusses why such a simple hypothesis works so well even when the original assumptions are no longer valid.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.862</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2959-0468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-11, Vol.1000, Article F2
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3131576713
source Cambridge University Press
subjects Convective clouds
Dense water
Entrainment
Environmental engineering
Fluid flow
Fluid mechanics
Focus on Fluids
General circulation models
Geophysical fluids
Hypotheses
Inflow
Interfaces
JFM Volume 1000
Lava
Magma
Magma chambers
Mathematical models
Ocean currents
Oceanic turbulence
Plumes
Turbidity
Turbidity currents
Turbulence
Turbulent flow
Velocity
Volcanic eruptions
Volcanoes
Water currents
title The entrainment hypothesis – 80 years old and still going strong
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20entrainment%20hypothesis%20%E2%80%93%2080%20years%20old%20and%20still%20going%20strong&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Cenedese,%20Claudia&rft.date=2024-11-22&rft.volume=1000&rft.artnum=F2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.862&rft_dat=%3Cproquest_cross%3E3131576713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-213ecc9b49c9d073d08b54cb6ac0430e19419bf07305e6b246e6365d43640a3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131576713&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_862&rfr_iscdi=true