Loading…

Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells

Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-11, Vol.14 (44), p.n/a
Main Authors: Ye, Tianshi, Qiao, Liang, Wang, Tao, Wang, Pengshuai, Zhang, Lin, Sun, Ruitian, Kong, Weiyu, Xu, Menglei, Yan, Xunlei, Yang, Jie, Zhang, Xinyu, Ma, Linlin, Yang, Xudong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced energy materials
container_volume 14
creator Ye, Tianshi
Qiao, Liang
Wang, Tao
Wang, Pengshuai
Zhang, Lin
Sun, Ruitian
Kong, Weiyu
Xu, Menglei
Yan, Xunlei
Yang, Jie
Zhang, Xinyu
Ma, Linlin
Yang, Xudong
description Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area). The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).
doi_str_mv 10.1002/aenm.202402491
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131680205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131680205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhQdRsNRuXQ-4njY_87sspVqlVaF1HWYyN21qOqnJjDIb8RF8Rp_EDJXqzkvgnoTv3EuO511iNMQIkVEO1W5IEAndyfCJ18MxDoM4DdHpUVNy7g2s3SJXDkKU9rz3hVbAG5Ubf9lWYNbS1pL7UyGA177Qxp_J9aa7Sy6h4q2_0JVWst446hGMfrXPsobRH7mUSnJd-Ssj9wq-Pj7vmorXsnvJqxJ2_lJ36yaglL3wzkSuLAx-et97up6uJrNg_nBzOxnPA-7-hAMaUpHFwHMREZwVCYIkTkuIIlIWaZLHJack4ygnVBQCJ1EoaJFhTkgcIShpTPve1WHu3uiXBmzNtroxlVvJKKY4ThFBkaOGB4obba0BwfZG7nLTMoxYFzPrYmbHmJ0hOxjepIL2H5qNp_eLX-831tWDxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131680205</pqid></control><display><type>article</type><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><source>Wiley</source><creator>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</creator><creatorcontrib>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</creatorcontrib><description>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area). The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202402491</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Chemical bonds ; Dipole moments ; Energy conversion efficiency ; Energy levels ; Functional groups ; Hydrogen bonds ; interface engineering ; mixed‐halide wide‐bandgap perovskites ; open‐circuit voltage deficit ; perovskite/perovskite/silicon triple‐junction tandem solar cells ; Perovskites ; Photovoltaic cells ; Radiative recombination ; Silicon ; Solar cells ; Synergistic effect</subject><ispartof>Advanced energy materials, 2024-11, Vol.14 (44), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</cites><orcidid>0000-0002-1943-7830 ; 0000-0002-3877-7830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Xu, Menglei</creatorcontrib><creatorcontrib>Yan, Xunlei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><title>Advanced energy materials</title><description>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area). The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</description><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Dipole moments</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Functional groups</subject><subject>Hydrogen bonds</subject><subject>interface engineering</subject><subject>mixed‐halide wide‐bandgap perovskites</subject><subject>open‐circuit voltage deficit</subject><subject>perovskite/perovskite/silicon triple‐junction tandem solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Synergistic effect</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhQdRsNRuXQ-4njY_87sspVqlVaF1HWYyN21qOqnJjDIb8RF8Rp_EDJXqzkvgnoTv3EuO511iNMQIkVEO1W5IEAndyfCJ18MxDoM4DdHpUVNy7g2s3SJXDkKU9rz3hVbAG5Ubf9lWYNbS1pL7UyGA177Qxp_J9aa7Sy6h4q2_0JVWst446hGMfrXPsobRH7mUSnJd-Ssj9wq-Pj7vmorXsnvJqxJ2_lJ36yaglL3wzkSuLAx-et97up6uJrNg_nBzOxnPA-7-hAMaUpHFwHMREZwVCYIkTkuIIlIWaZLHJack4ygnVBQCJ1EoaJFhTkgcIShpTPve1WHu3uiXBmzNtroxlVvJKKY4ThFBkaOGB4obba0BwfZG7nLTMoxYFzPrYmbHmJ0hOxjepIL2H5qNp_eLX-831tWDxA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ye, Tianshi</creator><creator>Qiao, Liang</creator><creator>Wang, Tao</creator><creator>Wang, Pengshuai</creator><creator>Zhang, Lin</creator><creator>Sun, Ruitian</creator><creator>Kong, Weiyu</creator><creator>Xu, Menglei</creator><creator>Yan, Xunlei</creator><creator>Yang, Jie</creator><creator>Zhang, Xinyu</creator><creator>Ma, Linlin</creator><creator>Yang, Xudong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1943-7830</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid></search><sort><creationdate>20241101</creationdate><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><author>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Dipole moments</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Functional groups</topic><topic>Hydrogen bonds</topic><topic>interface engineering</topic><topic>mixed‐halide wide‐bandgap perovskites</topic><topic>open‐circuit voltage deficit</topic><topic>perovskite/perovskite/silicon triple‐junction tandem solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Xu, Menglei</creatorcontrib><creatorcontrib>Yan, Xunlei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Tianshi</au><au>Qiao, Liang</au><au>Wang, Tao</au><au>Wang, Pengshuai</au><au>Zhang, Lin</au><au>Sun, Ruitian</au><au>Kong, Weiyu</au><au>Xu, Menglei</au><au>Yan, Xunlei</au><au>Yang, Jie</au><au>Zhang, Xinyu</au><au>Ma, Linlin</au><au>Yang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area). The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202402491</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1943-7830</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-11, Vol.14 (44), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3131680205
source Wiley
subjects Bonding strength
Chemical bonds
Dipole moments
Energy conversion efficiency
Energy levels
Functional groups
Hydrogen bonds
interface engineering
mixed‐halide wide‐bandgap perovskites
open‐circuit voltage deficit
perovskite/perovskite/silicon triple‐junction tandem solar cells
Perovskites
Photovoltaic cells
Radiative recombination
Silicon
Solar cells
Synergistic effect
title Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Synergistic%20Effect%20for%20High%20Efficiency%20Monolithic%20Perovskite/Perovskite/Silicon%20Triple%E2%80%90Junction%20Tandem%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Ye,%20Tianshi&rft.date=2024-11-01&rft.volume=14&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202402491&rft_dat=%3Cproquest_cross%3E3131680205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131680205&rft_id=info:pmid/&rfr_iscdi=true