Loading…
Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells
Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect...
Saved in:
Published in: | Advanced energy materials 2024-11, Vol.14 (44), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363 |
container_end_page | n/a |
container_issue | 44 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Ye, Tianshi Qiao, Liang Wang, Tao Wang, Pengshuai Zhang, Lin Sun, Ruitian Kong, Weiyu Xu, Menglei Yan, Xunlei Yang, Jie Zhang, Xinyu Ma, Linlin Yang, Xudong |
description | Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area).
The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area). |
doi_str_mv | 10.1002/aenm.202402491 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131680205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131680205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhQdRsNRuXQ-4njY_87sspVqlVaF1HWYyN21qOqnJjDIb8RF8Rp_EDJXqzkvgnoTv3EuO511iNMQIkVEO1W5IEAndyfCJ18MxDoM4DdHpUVNy7g2s3SJXDkKU9rz3hVbAG5Ubf9lWYNbS1pL7UyGA177Qxp_J9aa7Sy6h4q2_0JVWst446hGMfrXPsobRH7mUSnJd-Ssj9wq-Pj7vmorXsnvJqxJ2_lJ36yaglL3wzkSuLAx-et97up6uJrNg_nBzOxnPA-7-hAMaUpHFwHMREZwVCYIkTkuIIlIWaZLHJack4ygnVBQCJ1EoaJFhTkgcIShpTPve1WHu3uiXBmzNtroxlVvJKKY4ThFBkaOGB4obba0BwfZG7nLTMoxYFzPrYmbHmJ0hOxjepIL2H5qNp_eLX-831tWDxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131680205</pqid></control><display><type>article</type><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><source>Wiley</source><creator>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</creator><creatorcontrib>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</creatorcontrib><description>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area).
The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202402491</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Chemical bonds ; Dipole moments ; Energy conversion efficiency ; Energy levels ; Functional groups ; Hydrogen bonds ; interface engineering ; mixed‐halide wide‐bandgap perovskites ; open‐circuit voltage deficit ; perovskite/perovskite/silicon triple‐junction tandem solar cells ; Perovskites ; Photovoltaic cells ; Radiative recombination ; Silicon ; Solar cells ; Synergistic effect</subject><ispartof>Advanced energy materials, 2024-11, Vol.14 (44), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</cites><orcidid>0000-0002-1943-7830 ; 0000-0002-3877-7830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Xu, Menglei</creatorcontrib><creatorcontrib>Yan, Xunlei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><title>Advanced energy materials</title><description>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area).
The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</description><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Dipole moments</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>Functional groups</subject><subject>Hydrogen bonds</subject><subject>interface engineering</subject><subject>mixed‐halide wide‐bandgap perovskites</subject><subject>open‐circuit voltage deficit</subject><subject>perovskite/perovskite/silicon triple‐junction tandem solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Synergistic effect</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhQdRsNRuXQ-4njY_87sspVqlVaF1HWYyN21qOqnJjDIb8RF8Rp_EDJXqzkvgnoTv3EuO511iNMQIkVEO1W5IEAndyfCJ18MxDoM4DdHpUVNy7g2s3SJXDkKU9rz3hVbAG5Ubf9lWYNbS1pL7UyGA177Qxp_J9aa7Sy6h4q2_0JVWst446hGMfrXPsobRH7mUSnJd-Ssj9wq-Pj7vmorXsnvJqxJ2_lJ36yaglL3wzkSuLAx-et97up6uJrNg_nBzOxnPA-7-hAMaUpHFwHMREZwVCYIkTkuIIlIWaZLHJack4ygnVBQCJ1EoaJFhTkgcIShpTPve1WHu3uiXBmzNtroxlVvJKKY4ThFBkaOGB4obba0BwfZG7nLTMoxYFzPrYmbHmJ0hOxjepIL2H5qNp_eLX-831tWDxA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ye, Tianshi</creator><creator>Qiao, Liang</creator><creator>Wang, Tao</creator><creator>Wang, Pengshuai</creator><creator>Zhang, Lin</creator><creator>Sun, Ruitian</creator><creator>Kong, Weiyu</creator><creator>Xu, Menglei</creator><creator>Yan, Xunlei</creator><creator>Yang, Jie</creator><creator>Zhang, Xinyu</creator><creator>Ma, Linlin</creator><creator>Yang, Xudong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1943-7830</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid></search><sort><creationdate>20241101</creationdate><title>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</title><author>Ye, Tianshi ; Qiao, Liang ; Wang, Tao ; Wang, Pengshuai ; Zhang, Lin ; Sun, Ruitian ; Kong, Weiyu ; Xu, Menglei ; Yan, Xunlei ; Yang, Jie ; Zhang, Xinyu ; Ma, Linlin ; Yang, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Dipole moments</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>Functional groups</topic><topic>Hydrogen bonds</topic><topic>interface engineering</topic><topic>mixed‐halide wide‐bandgap perovskites</topic><topic>open‐circuit voltage deficit</topic><topic>perovskite/perovskite/silicon triple‐junction tandem solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tianshi</creatorcontrib><creatorcontrib>Qiao, Liang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Pengshuai</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Sun, Ruitian</creatorcontrib><creatorcontrib>Kong, Weiyu</creatorcontrib><creatorcontrib>Xu, Menglei</creatorcontrib><creatorcontrib>Yan, Xunlei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Ma, Linlin</creatorcontrib><creatorcontrib>Yang, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Tianshi</au><au>Qiao, Liang</au><au>Wang, Tao</au><au>Wang, Pengshuai</au><au>Zhang, Lin</au><au>Sun, Ruitian</au><au>Kong, Weiyu</au><au>Xu, Menglei</au><au>Yan, Xunlei</au><au>Yang, Jie</au><au>Zhang, Xinyu</au><au>Ma, Linlin</au><au>Yang, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Perovskite/perovskite/silicon triple‐junction tandem solar cells (TSCs) hold promise for high power conversion efficiencies (PCE). However, the efficiency is still relatively low due to the non‐radiative recombination losses in wide‐bandgap top cells. These losses, attributed to the interface defect states and energy level mismatches, present considerable challenges to realizing high‐performance and stable TSCs. Here, the molecular synergistic effect (MSE) is exploited to passivate interface in 1.95 eV top cells. Piperazine‐1‐carboxamide hydrochloride (PCACl) is combined, which possesses strong dipole moments and passivating functional groups that can bind with two neighboring uncoordinated lead ions and form hydrogen bonds with halide atoms at perovskite surface, with 1,3‐propane‐diammonium iodide, which can reduce interface recombination through field‐effect passivation. The MSE enabled by PCACl and PDAI2 facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. Finally, the target perovskite/perovskite/silicon triple‐junction TSC obtains an open‐circuit voltage of 3.07 V and a champion PCE of 25.2% (for a 1.035 cm2 aperture area).
The molecular synergistic effect enabled by piperazine‐1‐carboxamide hydrochloride and 1,3‐propane‐diammonium iodide facilitates excellent energy level alignment and reduces non‐radiative recombination losses and light‐induced phase segregation. The target perovskite/perovskite/silicon triple‐junction tandem solar cell obtains an open‐circuit voltage of 3.07 V and a champion power conversion efficiency of 25.2% (for a 1.035 cm2 aperture area).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202402491</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1943-7830</orcidid><orcidid>https://orcid.org/0000-0002-3877-7830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-11, Vol.14 (44), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_3131680205 |
source | Wiley |
subjects | Bonding strength Chemical bonds Dipole moments Energy conversion efficiency Energy levels Functional groups Hydrogen bonds interface engineering mixed‐halide wide‐bandgap perovskites open‐circuit voltage deficit perovskite/perovskite/silicon triple‐junction tandem solar cells Perovskites Photovoltaic cells Radiative recombination Silicon Solar cells Synergistic effect |
title | Molecular Synergistic Effect for High Efficiency Monolithic Perovskite/Perovskite/Silicon Triple‐Junction Tandem Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Synergistic%20Effect%20for%20High%20Efficiency%20Monolithic%20Perovskite/Perovskite/Silicon%20Triple%E2%80%90Junction%20Tandem%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Ye,%20Tianshi&rft.date=2024-11-01&rft.volume=14&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202402491&rft_dat=%3Cproquest_cross%3E3131680205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2021-343f96ecaf5219b70e768de552db87a6dc329c0a23fbf1754f3b91c22650ed363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131680205&rft_id=info:pmid/&rfr_iscdi=true |