Loading…
Triangular matrix categories over quasi-hereditary categories
In this paper, we prove that the lower triangular matrix category $\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$ , where $\mathcal{T}$ and $\mathcal{U}$ are $\textrm{Hom}$ -finite, Krull–Schmidt $K$ -quasi-hereditary categories and $M$ is an $...
Saved in:
Published in: | Glasgow mathematical journal 2024-09, Vol.66 (3), p.449-470 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c269t-caabd89e2b7d70686ce8379267712ab412dbf42bbed67e01e6efc1ca7a6591f3 |
container_end_page | 470 |
container_issue | 3 |
container_start_page | 449 |
container_title | Glasgow mathematical journal |
container_volume | 66 |
creator | Ochoa De La Cruz, Rafael Francisco Ortíz Morales, Martin Santiago Vargas, Valente |
description | In this paper, we prove that the lower triangular matrix category
$\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$
, where
$\mathcal{T}$
and
$\mathcal{U}$
are
$\textrm{Hom}$
-finite, Krull–Schmidt
$K$
-quasi-hereditary categories and
$M$
is an
$\mathcal{U}\otimes _K \mathcal{T}^{op}$
-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the
$_\Lambda \Delta$
-filtered
$\Lambda$
-modules. |
doi_str_mv | 10.1017/S0017089524000053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3131719306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089524000053</cupid><sourcerecordid>3131719306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-caabd89e2b7d70686ce8379267712ab412dbf42bbed67e01e6efc1ca7a6591f3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwueVzPJbrI5eJDiCwoe7MHbkmRna0rbbSe7ov_elBYUxDnM8PE9ZhjGLoFfAwd988pT55UpRcFTlfKIjaBQJi-5eTtmox2d7_hTdhbjIkGZ0IjdzijY9XxYWspWtqfwmXnb47yjgDHrPpCy7WBjyN-RsAm9pa9fgnN20tplxIvDHLPZw_1s8pRPXx6fJ3fT3Atl-txb65rKoHC60VxVymMltRFKaxDWFSAa1xbCOWyURg6osPXgrbaqNNDKMbvax26o2w4Y-3rRDbROG2sJEjQYyVVSwV7lqYuRsK03FFbp4Bp4vXtS_edJySMPHrtyFJo5_kT_7_oGmA9pmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131719306</pqid></control><display><type>article</type><title>Triangular matrix categories over quasi-hereditary categories</title><source>Cambridge Journals Online</source><creator>Ochoa De La Cruz, Rafael Francisco ; Ortíz Morales, Martin ; Santiago Vargas, Valente</creator><creatorcontrib>Ochoa De La Cruz, Rafael Francisco ; Ortíz Morales, Martin ; Santiago Vargas, Valente</creatorcontrib><description>In this paper, we prove that the lower triangular matrix category
$\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$
, where
$\mathcal{T}$
and
$\mathcal{U}$
are
$\textrm{Hom}$
-finite, Krull–Schmidt
$K$
-quasi-hereditary categories and
$M$
is an
$\mathcal{U}\otimes _K \mathcal{T}^{op}$
-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the
$_\Lambda \Delta$
-filtered
$\Lambda$
-modules.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089524000053</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Categories ; Modules</subject><ispartof>Glasgow mathematical journal, 2024-09, Vol.66 (3), p.449-470</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-caabd89e2b7d70686ce8379267712ab412dbf42bbed67e01e6efc1ca7a6591f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089524000053/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Ochoa De La Cruz, Rafael Francisco</creatorcontrib><creatorcontrib>Ortíz Morales, Martin</creatorcontrib><creatorcontrib>Santiago Vargas, Valente</creatorcontrib><title>Triangular matrix categories over quasi-hereditary categories</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>In this paper, we prove that the lower triangular matrix category
$\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$
, where
$\mathcal{T}$
and
$\mathcal{U}$
are
$\textrm{Hom}$
-finite, Krull–Schmidt
$K$
-quasi-hereditary categories and
$M$
is an
$\mathcal{U}\otimes _K \mathcal{T}^{op}$
-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the
$_\Lambda \Delta$
-filtered
$\Lambda$
-modules.</description><subject>Categories</subject><subject>Modules</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwueVzPJbrI5eJDiCwoe7MHbkmRna0rbbSe7ov_elBYUxDnM8PE9ZhjGLoFfAwd988pT55UpRcFTlfKIjaBQJi-5eTtmox2d7_hTdhbjIkGZ0IjdzijY9XxYWspWtqfwmXnb47yjgDHrPpCy7WBjyN-RsAm9pa9fgnN20tplxIvDHLPZw_1s8pRPXx6fJ3fT3Atl-txb65rKoHC60VxVymMltRFKaxDWFSAa1xbCOWyURg6osPXgrbaqNNDKMbvax26o2w4Y-3rRDbROG2sJEjQYyVVSwV7lqYuRsK03FFbp4Bp4vXtS_edJySMPHrtyFJo5_kT_7_oGmA9pmQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ochoa De La Cruz, Rafael Francisco</creator><creator>Ortíz Morales, Martin</creator><creator>Santiago Vargas, Valente</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Triangular matrix categories over quasi-hereditary categories</title><author>Ochoa De La Cruz, Rafael Francisco ; Ortíz Morales, Martin ; Santiago Vargas, Valente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-caabd89e2b7d70686ce8379267712ab412dbf42bbed67e01e6efc1ca7a6591f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Categories</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa De La Cruz, Rafael Francisco</creatorcontrib><creatorcontrib>Ortíz Morales, Martin</creatorcontrib><creatorcontrib>Santiago Vargas, Valente</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa De La Cruz, Rafael Francisco</au><au>Ortíz Morales, Martin</au><au>Santiago Vargas, Valente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangular matrix categories over quasi-hereditary categories</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>66</volume><issue>3</issue><spage>449</spage><epage>470</epage><pages>449-470</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In this paper, we prove that the lower triangular matrix category
$\Lambda =\left [ \begin{smallmatrix} \mathcal{T}&0\\ M&\mathcal{U} \end{smallmatrix} \right ]$
, where
$\mathcal{T}$
and
$\mathcal{U}$
are
$\textrm{Hom}$
-finite, Krull–Schmidt
$K$
-quasi-hereditary categories and
$M$
is an
$\mathcal{U}\otimes _K \mathcal{T}^{op}$
-module that satisfies suitable conditions, is quasi-hereditary. This result generalizes the work of B. Zhu in his study on triangular matrix algebras over quasi-hereditary algebras. Moreover, we obtain a characterization of the category of the
$_\Lambda \Delta$
-filtered
$\Lambda$
-modules.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089524000053</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2024-09, Vol.66 (3), p.449-470 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_3131719306 |
source | Cambridge Journals Online |
subjects | Categories Modules |
title | Triangular matrix categories over quasi-hereditary categories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangular%20matrix%20categories%20over%20quasi-hereditary%20categories&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Ochoa%20De%20La%20Cruz,%20Rafael%20Francisco&rft.date=2024-09-01&rft.volume=66&rft.issue=3&rft.spage=449&rft.epage=470&rft.pages=449-470&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089524000053&rft_dat=%3Cproquest_cross%3E3131719306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-caabd89e2b7d70686ce8379267712ab412dbf42bbed67e01e6efc1ca7a6591f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131719306&rft_id=info:pmid/&rft_cupid=10_1017_S0017089524000053&rfr_iscdi=true |