Loading…

Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy

JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, fo...

Full description

Saved in:
Bibliographic Details
Published in:Physics of particles and nuclei letters 2024-12, Vol.21 (6), p.1174-1180
Main Authors: Abduvaliev, A. A., Agapov, A. V., Breev, V. M., Mytsin, G. V., Khushvaktov, J. H., Uglova, S. S., Shipulin, K. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-9f97a7211b948982c81a59ae53c5450850063afe2d5f2dcce246c378785a2edd3
container_end_page 1180
container_issue 6
container_start_page 1174
container_title Physics of particles and nuclei letters
container_volume 21
creator Abduvaliev, A. A.
Agapov, A. V.
Breev, V. M.
Mytsin, G. V.
Khushvaktov, J. H.
Uglova, S. S.
Shipulin, K. N.
description JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.
doi_str_mv 10.1134/S1547477124701747
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132130013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132130013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-9f97a7211b948982c81a59ae53c5450850063afe2d5f2dcce246c378785a2edd3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5k8muzRFl_QYtF6XsZs0m61m5psD_33ZqngQTzNN_M9ZhhCLoFdAwh58wpKaqk1cKkZZHREBqAEFEaN9HGPpS56_pScpbRmTArBxIDMFs6u2uZr52jwdBbqxjcWuya0fd-tHB1HXC7p3OFHP0E6j6HL7NjhhvoQ6QvWTcjCiNv9OTnx-JncxU8dkrf7u8XksZg-PzxNbqeFhdJ0RelLjZoDvJfSlIZbA6hKdEpYJRUzirGRQO94rTyvrXVcjqzQRhuF3NW1GJKrQ-42hnx66qp12MU2r6wECA6CMRBZBQeVjSGl6Hy1jc0G474CVvVfq_58LXv4wZOytl26-Jv8v-kbhz9sfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132130013</pqid></control><display><type>article</type><title>Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy</title><source>Springer Nature</source><creator>Abduvaliev, A. A. ; Agapov, A. V. ; Breev, V. M. ; Mytsin, G. V. ; Khushvaktov, J. H. ; Uglova, S. S. ; Shipulin, K. N.</creator><creatorcontrib>Abduvaliev, A. A. ; Agapov, A. V. ; Breev, V. M. ; Mytsin, G. V. ; Khushvaktov, J. H. ; Uglova, S. S. ; Shipulin, K. N.</creatorcontrib><description>JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.</description><identifier>ISSN: 1547-4771</identifier><identifier>EISSN: 1531-8567</identifier><identifier>DOI: 10.1134/S1547477124701747</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bragg curve ; Cyclotrons ; Energy spectra ; Monte Carlo simulation ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Physics and Technique of Accelerators ; Proton beams ; Radiation therapy ; Radiobiology</subject><ispartof>Physics of particles and nuclei letters, 2024-12, Vol.21 (6), p.1174-1180</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2024, Vol. 21, No. 6, pp. 1174–1180. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-9f97a7211b948982c81a59ae53c5450850063afe2d5f2dcce246c378785a2edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abduvaliev, A. A.</creatorcontrib><creatorcontrib>Agapov, A. V.</creatorcontrib><creatorcontrib>Breev, V. M.</creatorcontrib><creatorcontrib>Mytsin, G. V.</creatorcontrib><creatorcontrib>Khushvaktov, J. H.</creatorcontrib><creatorcontrib>Uglova, S. S.</creatorcontrib><creatorcontrib>Shipulin, K. N.</creatorcontrib><title>Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy</title><title>Physics of particles and nuclei letters</title><addtitle>Phys. Part. Nuclei Lett</addtitle><description>JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.</description><subject>Bragg curve</subject><subject>Cyclotrons</subject><subject>Energy spectra</subject><subject>Monte Carlo simulation</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics and Technique of Accelerators</subject><subject>Proton beams</subject><subject>Radiation therapy</subject><subject>Radiobiology</subject><issn>1547-4771</issn><issn>1531-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5k8muzRFl_QYtF6XsZs0m61m5psD_33ZqngQTzNN_M9ZhhCLoFdAwh58wpKaqk1cKkZZHREBqAEFEaN9HGPpS56_pScpbRmTArBxIDMFs6u2uZr52jwdBbqxjcWuya0fd-tHB1HXC7p3OFHP0E6j6HL7NjhhvoQ6QvWTcjCiNv9OTnx-JncxU8dkrf7u8XksZg-PzxNbqeFhdJ0RelLjZoDvJfSlIZbA6hKdEpYJRUzirGRQO94rTyvrXVcjqzQRhuF3NW1GJKrQ-42hnx66qp12MU2r6wECA6CMRBZBQeVjSGl6Hy1jc0G474CVvVfq_58LXv4wZOytl26-Jv8v-kbhz9sfQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abduvaliev, A. A.</creator><creator>Agapov, A. V.</creator><creator>Breev, V. M.</creator><creator>Mytsin, G. V.</creator><creator>Khushvaktov, J. H.</creator><creator>Uglova, S. S.</creator><creator>Shipulin, K. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy</title><author>Abduvaliev, A. A. ; Agapov, A. V. ; Breev, V. M. ; Mytsin, G. V. ; Khushvaktov, J. H. ; Uglova, S. S. ; Shipulin, K. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-9f97a7211b948982c81a59ae53c5450850063afe2d5f2dcce246c378785a2edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bragg curve</topic><topic>Cyclotrons</topic><topic>Energy spectra</topic><topic>Monte Carlo simulation</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics and Technique of Accelerators</topic><topic>Proton beams</topic><topic>Radiation therapy</topic><topic>Radiobiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abduvaliev, A. A.</creatorcontrib><creatorcontrib>Agapov, A. V.</creatorcontrib><creatorcontrib>Breev, V. M.</creatorcontrib><creatorcontrib>Mytsin, G. V.</creatorcontrib><creatorcontrib>Khushvaktov, J. H.</creatorcontrib><creatorcontrib>Uglova, S. S.</creatorcontrib><creatorcontrib>Shipulin, K. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of particles and nuclei letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abduvaliev, A. A.</au><au>Agapov, A. V.</au><au>Breev, V. M.</au><au>Mytsin, G. V.</au><au>Khushvaktov, J. H.</au><au>Uglova, S. S.</au><au>Shipulin, K. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy</atitle><jtitle>Physics of particles and nuclei letters</jtitle><stitle>Phys. Part. Nuclei Lett</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>1174</spage><epage>1180</epage><pages>1174-1180</pages><issn>1547-4771</issn><eissn>1531-8567</eissn><abstract>JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1547477124701747</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1547-4771
ispartof Physics of particles and nuclei letters, 2024-12, Vol.21 (6), p.1174-1180
issn 1547-4771
1531-8567
language eng
recordid cdi_proquest_journals_3132130013
source Springer Nature
subjects Bragg curve
Cyclotrons
Energy spectra
Monte Carlo simulation
Particle and Nuclear Physics
Physics
Physics and Astronomy
Physics and Technique of Accelerators
Proton beams
Radiation therapy
Radiobiology
title Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technique%20of%20Modification%20of%20the%20Bragg%20Peak%20of%20a%20Proton%20Beam%20for%20Radiotherapy&rft.jtitle=Physics%20of%20particles%20and%20nuclei%20letters&rft.au=Abduvaliev,%20A.%20A.&rft.date=2024-12-01&rft.volume=21&rft.issue=6&rft.spage=1174&rft.epage=1180&rft.pages=1174-1180&rft.issn=1547-4771&rft.eissn=1531-8567&rft_id=info:doi/10.1134/S1547477124701747&rft_dat=%3Cproquest_cross%3E3132130013%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-9f97a7211b948982c81a59ae53c5450850063afe2d5f2dcce246c378785a2edd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132130013&rft_id=info:pmid/&rfr_iscdi=true