Loading…

Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion

To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established....

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of time-dependent materials 2024-12, Vol.28 (4), p.3117-3137
Main Authors: Zhang, Fengrui, Jiang, Annan, Jiang, Haopeng, Guo, Xinping, Zheng, Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-f655212ae32260d3e011ea4e6c8325d17cb0b999c57440c3efa052e1742771a93
container_end_page 3137
container_issue 4
container_start_page 3117
container_title Mechanics of time-dependent materials
container_volume 28
creator Zhang, Fengrui
Jiang, Annan
Jiang, Haopeng
Guo, Xinping
Zheng, Fu
description To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.
doi_str_mv 10.1007/s11043-024-09722-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132130163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132130163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f655212ae32260d3e011ea4e6c8325d17cb0b999c57440c3efa052e1742771a93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AU8Bz9FJ0jbtUdZPWPCi55BNp9uubVKTrqInf7qpFbx5moGZ553hSZIzBhcMQF4GxiAVFHhKoZScU7GXLFgmBeVSFPuxF0VGOQAcJkchbGMjSygWydc1vmHnhh7tSFxNNAkNak-MRxxIpXu9QdK7CrtpunWtHbEi3pkX0usQMBDjbGgr9K3dkLFB0tq626E1OAF1jPlEOjb6nWhbEdNg3xrdRcp7F1pnT5KDWncBT3_rcfJ8e_O0vKerx7uH5dWKmvj1SOs8yzjjGgXnOVQCgTHUKeamEDyrmDRrWJdlaTKZpmAE1hoyjkymXEqmS3GcnM-5g3evOwyj2rqdt_GkEkxwJoDlIm7xecvE74LHWg2-7bX_UAzUZFrNplU0rX5MqwkSMxSGyQL6v-h_qG8rmoGp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132130163</pqid></control><display><type>article</type><title>Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion</title><source>Springer Nature</source><creator>Zhang, Fengrui ; Jiang, Annan ; Jiang, Haopeng ; Guo, Xinping ; Zheng, Fu</creator><creatorcontrib>Zhang, Fengrui ; Jiang, Annan ; Jiang, Haopeng ; Guo, Xinping ; Zheng, Fu</creatorcontrib><description>To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-024-09722-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemical damage ; Classical Mechanics ; Corrosion ; Corrosion tests ; Creep strength ; Creep tests ; Damage assessment ; Deformation ; Engineering ; Freeze thaw cycles ; Inclination angle ; Jointed rock ; Plastic zones ; Polymer Sciences ; Rock masses ; Shear creep ; Solid Mechanics ; Stability analysis ; Tunnels</subject><ispartof>Mechanics of time-dependent materials, 2024-12, Vol.28 (4), p.3117-3137</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f655212ae32260d3e011ea4e6c8325d17cb0b999c57440c3efa052e1742771a93</cites><orcidid>0000-0003-4045-8799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Fengrui</creatorcontrib><creatorcontrib>Jiang, Annan</creatorcontrib><creatorcontrib>Jiang, Haopeng</creatorcontrib><creatorcontrib>Guo, Xinping</creatorcontrib><creatorcontrib>Zheng, Fu</creatorcontrib><title>Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical damage</subject><subject>Classical Mechanics</subject><subject>Corrosion</subject><subject>Corrosion tests</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Damage assessment</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Freeze thaw cycles</subject><subject>Inclination angle</subject><subject>Jointed rock</subject><subject>Plastic zones</subject><subject>Polymer Sciences</subject><subject>Rock masses</subject><subject>Shear creep</subject><subject>Solid Mechanics</subject><subject>Stability analysis</subject><subject>Tunnels</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AU8Bz9FJ0jbtUdZPWPCi55BNp9uubVKTrqInf7qpFbx5moGZ553hSZIzBhcMQF4GxiAVFHhKoZScU7GXLFgmBeVSFPuxF0VGOQAcJkchbGMjSygWydc1vmHnhh7tSFxNNAkNak-MRxxIpXu9QdK7CrtpunWtHbEi3pkX0usQMBDjbGgr9K3dkLFB0tq626E1OAF1jPlEOjb6nWhbEdNg3xrdRcp7F1pnT5KDWncBT3_rcfJ8e_O0vKerx7uH5dWKmvj1SOs8yzjjGgXnOVQCgTHUKeamEDyrmDRrWJdlaTKZpmAE1hoyjkymXEqmS3GcnM-5g3evOwyj2rqdt_GkEkxwJoDlIm7xecvE74LHWg2-7bX_UAzUZFrNplU0rX5MqwkSMxSGyQL6v-h_qG8rmoGp</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Fengrui</creator><creator>Jiang, Annan</creator><creator>Jiang, Haopeng</creator><creator>Guo, Xinping</creator><creator>Zheng, Fu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4045-8799</orcidid></search><sort><creationdate>20241201</creationdate><title>Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion</title><author>Zhang, Fengrui ; Jiang, Annan ; Jiang, Haopeng ; Guo, Xinping ; Zheng, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f655212ae32260d3e011ea4e6c8325d17cb0b999c57440c3efa052e1742771a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical damage</topic><topic>Classical Mechanics</topic><topic>Corrosion</topic><topic>Corrosion tests</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Damage assessment</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Freeze thaw cycles</topic><topic>Inclination angle</topic><topic>Jointed rock</topic><topic>Plastic zones</topic><topic>Polymer Sciences</topic><topic>Rock masses</topic><topic>Shear creep</topic><topic>Solid Mechanics</topic><topic>Stability analysis</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fengrui</creatorcontrib><creatorcontrib>Jiang, Annan</creatorcontrib><creatorcontrib>Jiang, Haopeng</creatorcontrib><creatorcontrib>Guo, Xinping</creatorcontrib><creatorcontrib>Zheng, Fu</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fengrui</au><au>Jiang, Annan</au><au>Jiang, Haopeng</au><au>Guo, Xinping</au><au>Zheng, Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>3117</spage><epage>3137</epage><pages>3117-3137</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-024-09722-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4045-8799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-2000
ispartof Mechanics of time-dependent materials, 2024-12, Vol.28 (4), p.3117-3137
issn 1385-2000
1573-2738
language eng
recordid cdi_proquest_journals_3132130163
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemical damage
Classical Mechanics
Corrosion
Corrosion tests
Creep strength
Creep tests
Damage assessment
Deformation
Engineering
Freeze thaw cycles
Inclination angle
Jointed rock
Plastic zones
Polymer Sciences
Rock masses
Shear creep
Solid Mechanics
Stability analysis
Tunnels
title Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20shear%20creep%20damage%20model%20of%20jointed%20rock%20masses%20considering%20the%20influence%20of%20freeze-thaw%20and%20chemical%20corrosion&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Zhang,%20Fengrui&rft.date=2024-12-01&rft.volume=28&rft.issue=4&rft.spage=3117&rft.epage=3137&rft.pages=3117-3137&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-024-09722-3&rft_dat=%3Cproquest_cross%3E3132130163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-f655212ae32260d3e011ea4e6c8325d17cb0b999c57440c3efa052e1742771a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132130163&rft_id=info:pmid/&rfr_iscdi=true