Loading…
RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts
Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wijk, Hjalmar Lin, Tao Becker, Joel Jawhar, Sami Parikh, Neev Broadley, Thomas Chan, Lawrence Chen, Michael Clymer, Josh Dhyani, Jai Ericheva, Elena Garcia, Katharyn Goodrich, Brian Jurkovic, Nikola Kinniment, Megan Lajko, Aron Nix, Seraphina Sato, Lucas Saunders, William Taran, Maksym West, Ben Barnes, Elizabeth |
description | Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3132697477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132697477</sourcerecordid><originalsourceid>FETCH-proquest_journals_31326974773</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWNR_uCC4K9SkWnXno6Lb4r5eNW1T0qTmIX6-WfgBruYwZwYkoowt4nVK6YhMrW2TJKGrjC6XLCK3Io_3XD2aLeRvlB6dUDVURisnuIHdBYr5ER7Y411IEZwFXYFEVXusOXT6ySWEpZwNQKGsg8Z3qIB_em6cnZBhhdLy6Y9jMjvl18M57o1-eW5d2WpvVLhKtmB0tcnSLGP_VV862kQF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132697477</pqid></control><display><type>article</type><title>RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts</title><source>Publicly Available Content Database</source><creator>Wijk, Hjalmar ; Lin, Tao ; Becker, Joel ; Jawhar, Sami ; Parikh, Neev ; Broadley, Thomas ; Chan, Lawrence ; Chen, Michael ; Clymer, Josh ; Dhyani, Jai ; Ericheva, Elena ; Garcia, Katharyn ; Goodrich, Brian ; Jurkovic, Nikola ; Kinniment, Megan ; Lajko, Aron ; Nix, Seraphina ; Sato, Lucas ; Saunders, William ; Taran, Maksym ; West, Ben ; Barnes, Elizabeth</creator><creatorcontrib>Wijk, Hjalmar ; Lin, Tao ; Becker, Joel ; Jawhar, Sami ; Parikh, Neev ; Broadley, Thomas ; Chan, Lawrence ; Chen, Michael ; Clymer, Josh ; Dhyani, Jai ; Ericheva, Elena ; Garcia, Katharyn ; Goodrich, Brian ; Jurkovic, Nikola ; Kinniment, Megan ; Lajko, Aron ; Nix, Seraphina ; Sato, Lucas ; Saunders, William ; Taran, Maksym ; West, Ben ; Barnes, Elizabeth</creatorcontrib><description>Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Budgets ; Human performance ; Performance evaluation ; R&D ; Research & development ; Source code</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3132697477?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Wijk, Hjalmar</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Becker, Joel</creatorcontrib><creatorcontrib>Jawhar, Sami</creatorcontrib><creatorcontrib>Parikh, Neev</creatorcontrib><creatorcontrib>Broadley, Thomas</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Chen, Michael</creatorcontrib><creatorcontrib>Clymer, Josh</creatorcontrib><creatorcontrib>Dhyani, Jai</creatorcontrib><creatorcontrib>Ericheva, Elena</creatorcontrib><creatorcontrib>Garcia, Katharyn</creatorcontrib><creatorcontrib>Goodrich, Brian</creatorcontrib><creatorcontrib>Jurkovic, Nikola</creatorcontrib><creatorcontrib>Kinniment, Megan</creatorcontrib><creatorcontrib>Lajko, Aron</creatorcontrib><creatorcontrib>Nix, Seraphina</creatorcontrib><creatorcontrib>Sato, Lucas</creatorcontrib><creatorcontrib>Saunders, William</creatorcontrib><creatorcontrib>Taran, Maksym</creatorcontrib><creatorcontrib>West, Ben</creatorcontrib><creatorcontrib>Barnes, Elizabeth</creatorcontrib><title>RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts</title><title>arXiv.org</title><description>Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.</description><subject>Budgets</subject><subject>Human performance</subject><subject>Performance evaluation</subject><subject>R&D</subject><subject>Research & development</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAUBYMgWNR_uCC4K9SkWnXno6Lb4r5eNW1T0qTmIX6-WfgBruYwZwYkoowt4nVK6YhMrW2TJKGrjC6XLCK3Io_3XD2aLeRvlB6dUDVURisnuIHdBYr5ER7Y411IEZwFXYFEVXusOXT6ySWEpZwNQKGsg8Z3qIB_em6cnZBhhdLy6Y9jMjvl18M57o1-eW5d2WpvVLhKtmB0tcnSLGP_VV862kQF</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Wijk, Hjalmar</creator><creator>Lin, Tao</creator><creator>Becker, Joel</creator><creator>Jawhar, Sami</creator><creator>Parikh, Neev</creator><creator>Broadley, Thomas</creator><creator>Chan, Lawrence</creator><creator>Chen, Michael</creator><creator>Clymer, Josh</creator><creator>Dhyani, Jai</creator><creator>Ericheva, Elena</creator><creator>Garcia, Katharyn</creator><creator>Goodrich, Brian</creator><creator>Jurkovic, Nikola</creator><creator>Kinniment, Megan</creator><creator>Lajko, Aron</creator><creator>Nix, Seraphina</creator><creator>Sato, Lucas</creator><creator>Saunders, William</creator><creator>Taran, Maksym</creator><creator>West, Ben</creator><creator>Barnes, Elizabeth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241122</creationdate><title>RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts</title><author>Wijk, Hjalmar ; Lin, Tao ; Becker, Joel ; Jawhar, Sami ; Parikh, Neev ; Broadley, Thomas ; Chan, Lawrence ; Chen, Michael ; Clymer, Josh ; Dhyani, Jai ; Ericheva, Elena ; Garcia, Katharyn ; Goodrich, Brian ; Jurkovic, Nikola ; Kinniment, Megan ; Lajko, Aron ; Nix, Seraphina ; Sato, Lucas ; Saunders, William ; Taran, Maksym ; West, Ben ; Barnes, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31326974773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Budgets</topic><topic>Human performance</topic><topic>Performance evaluation</topic><topic>R&D</topic><topic>Research & development</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Wijk, Hjalmar</creatorcontrib><creatorcontrib>Lin, Tao</creatorcontrib><creatorcontrib>Becker, Joel</creatorcontrib><creatorcontrib>Jawhar, Sami</creatorcontrib><creatorcontrib>Parikh, Neev</creatorcontrib><creatorcontrib>Broadley, Thomas</creatorcontrib><creatorcontrib>Chan, Lawrence</creatorcontrib><creatorcontrib>Chen, Michael</creatorcontrib><creatorcontrib>Clymer, Josh</creatorcontrib><creatorcontrib>Dhyani, Jai</creatorcontrib><creatorcontrib>Ericheva, Elena</creatorcontrib><creatorcontrib>Garcia, Katharyn</creatorcontrib><creatorcontrib>Goodrich, Brian</creatorcontrib><creatorcontrib>Jurkovic, Nikola</creatorcontrib><creatorcontrib>Kinniment, Megan</creatorcontrib><creatorcontrib>Lajko, Aron</creatorcontrib><creatorcontrib>Nix, Seraphina</creatorcontrib><creatorcontrib>Sato, Lucas</creatorcontrib><creatorcontrib>Saunders, William</creatorcontrib><creatorcontrib>Taran, Maksym</creatorcontrib><creatorcontrib>West, Ben</creatorcontrib><creatorcontrib>Barnes, Elizabeth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wijk, Hjalmar</au><au>Lin, Tao</au><au>Becker, Joel</au><au>Jawhar, Sami</au><au>Parikh, Neev</au><au>Broadley, Thomas</au><au>Chan, Lawrence</au><au>Chen, Michael</au><au>Clymer, Josh</au><au>Dhyani, Jai</au><au>Ericheva, Elena</au><au>Garcia, Katharyn</au><au>Goodrich, Brian</au><au>Jurkovic, Nikola</au><au>Kinniment, Megan</au><au>Lajko, Aron</au><au>Nix, Seraphina</au><au>Sato, Lucas</au><au>Saunders, William</au><au>Taran, Maksym</au><au>West, Ben</au><au>Barnes, Elizabeth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts</atitle><jtitle>arXiv.org</jtitle><date>2024-11-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3132697477 |
source | Publicly Available Content Database |
subjects | Budgets Human performance Performance evaluation R&D Research & development Source code |
title | RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RE-Bench:%20Evaluating%20frontier%20AI%20R&D%20capabilities%20of%20language%20model%20agents%20against%20human%20experts&rft.jtitle=arXiv.org&rft.au=Wijk,%20Hjalmar&rft.date=2024-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3132697477%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31326974773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132697477&rft_id=info:pmid/&rfr_iscdi=true |