Loading…

Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia

Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247
Main Authors: Gao, Wanli, Michali ka, Jan, Pumera, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243
container_end_page 3247
container_issue 46
container_start_page 32458
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Gao, Wanli
Michali ka, Jan
Pumera, Martin
description Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO 2 OR) and nitrite reduction reaction (NO 2 RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO 2 . The resulting TiO 2 -coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO 2 OR, it exhibits a peak current density of 0.75 mA cm −2 at 1.53 V vs. RHE, while for NO 2 RR, it achieves a yield rate of 630.5 µg h −1 cm −2 with a faradaic efficiency of 81.9% at −1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO 2 . The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production. A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO 2 is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.
doi_str_mv 10.1039/d4ta06800a
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3132775771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132775771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN2E1u0k3ybG0fkHBSz0v02RWU7pJTbJg_3vXVupcZgZ-8x7zCLku2X3JuH6wIgOrFWNwRkYVm7JCCl2fn2alLskkpQ0baqBqrUckz3LonKG5985_0NBSvqC76HxGSw3EdfA09bEFg9R8YudSjnvahkhxiybHYCDDdp8HCe9ydBlp-HYWshsOwVsa0fbmsOVAoeuCd3BFLlrYJpz89TF5f3pczV-K5dvz63y2LEwpWS7KtWBTQF4BWC2U1dZUFlvGQQsraqUkIrcGEKxUoNaIpkbV6kpYLVkl-JjcHnV3MXz1mHKzCX30g2XDS15JOZWyHKi7I2ViSCli2wz_dxD3Tcma32CbhVjNDsHOBvjmCMdkTtx_8PwHNBV3hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132775771</pqid></control><display><type>article</type><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><source>Royal Society of Chemistry Journals</source><creator>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</creator><creatorcontrib>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</creatorcontrib><description>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO 2 OR) and nitrite reduction reaction (NO 2 RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO 2 . The resulting TiO 2 -coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO 2 OR, it exhibits a peak current density of 0.75 mA cm −2 at 1.53 V vs. RHE, while for NO 2 RR, it achieves a yield rate of 630.5 µg h −1 cm −2 with a faradaic efficiency of 81.9% at −1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO 2 . The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production. A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO 2 is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta06800a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agricultural pollution ; Agricultural wastes ; Ammonia ; Atomic layer epitaxy ; Carbon ; Carbon nanotubes ; Carbon sources ; Chemical activity ; Chemical reduction ; Electrocatalysts ; Electrochemistry ; Electrodes ; Environmental impact ; Environmental monitoring ; Fabrication ; Impurities ; Industrial pollution ; Industrial wastes ; Industrial wastewater ; Nanotechnology ; Nanotubes ; Nitrites ; Oxidation ; Substrates ; Surface chemistry ; Three dimensional printing ; Titanium dioxide ; Wastewater treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</cites><orcidid>0000-0001-5846-2951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gao, Wanli</creatorcontrib><creatorcontrib>Michali ka, Jan</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO 2 OR) and nitrite reduction reaction (NO 2 RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO 2 . The resulting TiO 2 -coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO 2 OR, it exhibits a peak current density of 0.75 mA cm −2 at 1.53 V vs. RHE, while for NO 2 RR, it achieves a yield rate of 630.5 µg h −1 cm −2 with a faradaic efficiency of 81.9% at −1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO 2 . The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production. A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO 2 is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</description><subject>Agricultural pollution</subject><subject>Agricultural wastes</subject><subject>Ammonia</subject><subject>Atomic layer epitaxy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carbon sources</subject><subject>Chemical activity</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Fabrication</subject><subject>Impurities</subject><subject>Industrial pollution</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nitrites</subject><subject>Oxidation</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Three dimensional printing</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN2E1u0k3ybG0fkHBSz0v02RWU7pJTbJg_3vXVupcZgZ-8x7zCLku2X3JuH6wIgOrFWNwRkYVm7JCCl2fn2alLskkpQ0baqBqrUckz3LonKG5985_0NBSvqC76HxGSw3EdfA09bEFg9R8YudSjnvahkhxiybHYCDDdp8HCe9ydBlp-HYWshsOwVsa0fbmsOVAoeuCd3BFLlrYJpz89TF5f3pczV-K5dvz63y2LEwpWS7KtWBTQF4BWC2U1dZUFlvGQQsraqUkIrcGEKxUoNaIpkbV6kpYLVkl-JjcHnV3MXz1mHKzCX30g2XDS15JOZWyHKi7I2ViSCli2wz_dxD3Tcma32CbhVjNDsHOBvjmCMdkTtx_8PwHNBV3hw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Gao, Wanli</creator><creator>Michali ka, Jan</creator><creator>Pumera, Martin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></search><sort><creationdate>20241126</creationdate><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><author>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural pollution</topic><topic>Agricultural wastes</topic><topic>Ammonia</topic><topic>Atomic layer epitaxy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carbon sources</topic><topic>Chemical activity</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Fabrication</topic><topic>Impurities</topic><topic>Industrial pollution</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nitrites</topic><topic>Oxidation</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Three dimensional printing</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wanli</creatorcontrib><creatorcontrib>Michali ka, Jan</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wanli</au><au>Michali ka, Jan</au><au>Pumera, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-11-26</date><risdate>2024</risdate><volume>12</volume><issue>46</issue><spage>32458</spage><epage>3247</epage><pages>32458-3247</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO 2 OR) and nitrite reduction reaction (NO 2 RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO 2 . The resulting TiO 2 -coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO 2 OR, it exhibits a peak current density of 0.75 mA cm −2 at 1.53 V vs. RHE, while for NO 2 RR, it achieves a yield rate of 630.5 µg h −1 cm −2 with a faradaic efficiency of 81.9% at −1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO 2 . The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production. A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO 2 is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta06800a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3132775771
source Royal Society of Chemistry Journals
subjects Agricultural pollution
Agricultural wastes
Ammonia
Atomic layer epitaxy
Carbon
Carbon nanotubes
Carbon sources
Chemical activity
Chemical reduction
Electrocatalysts
Electrochemistry
Electrodes
Environmental impact
Environmental monitoring
Fabrication
Impurities
Industrial pollution
Industrial wastes
Industrial wastewater
Nanotechnology
Nanotubes
Nitrites
Oxidation
Substrates
Surface chemistry
Three dimensional printing
Titanium dioxide
Wastewater treatment
title Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20tuning%20of%203D%20printed%20carbon%20surface%20chemistry%20for%20electrocatalytic%20nitrite%20oxidation%20and%20reduction%20to%20ammonia&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Wanli&rft.date=2024-11-26&rft.volume=12&rft.issue=46&rft.spage=32458&rft.epage=3247&rft.pages=32458-3247&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta06800a&rft_dat=%3Cproquest_rsc_p%3E3132775771%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132775771&rft_id=info:pmid/&rfr_iscdi=true