Loading…
Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia
Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243 |
container_end_page | 3247 |
container_issue | 46 |
container_start_page | 32458 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Gao, Wanli Michali ka, Jan Pumera, Martin |
description | Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO
2
OR) and nitrite reduction reaction (NO
2
RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO
2
. The resulting TiO
2
-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO
2
OR, it exhibits a peak current density of 0.75 mA cm
−2
at 1.53 V
vs.
RHE, while for NO
2
RR, it achieves a yield rate of 630.5 µg h
−1
cm
−2
with a faradaic efficiency of 81.9% at −1.06 V
vs.
RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO
2
. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.
A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO
2
is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation. |
doi_str_mv | 10.1039/d4ta06800a |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3132775771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132775771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN2E1u0k3ybG0fkHBSz0v02RWU7pJTbJg_3vXVupcZgZ-8x7zCLku2X3JuH6wIgOrFWNwRkYVm7JCCl2fn2alLskkpQ0baqBqrUckz3LonKG5985_0NBSvqC76HxGSw3EdfA09bEFg9R8YudSjnvahkhxiybHYCDDdp8HCe9ydBlp-HYWshsOwVsa0fbmsOVAoeuCd3BFLlrYJpz89TF5f3pczV-K5dvz63y2LEwpWS7KtWBTQF4BWC2U1dZUFlvGQQsraqUkIrcGEKxUoNaIpkbV6kpYLVkl-JjcHnV3MXz1mHKzCX30g2XDS15JOZWyHKi7I2ViSCli2wz_dxD3Tcma32CbhVjNDsHOBvjmCMdkTtx_8PwHNBV3hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132775771</pqid></control><display><type>article</type><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><source>Royal Society of Chemistry Journals</source><creator>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</creator><creatorcontrib>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</creatorcontrib><description>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO
2
OR) and nitrite reduction reaction (NO
2
RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO
2
. The resulting TiO
2
-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO
2
OR, it exhibits a peak current density of 0.75 mA cm
−2
at 1.53 V
vs.
RHE, while for NO
2
RR, it achieves a yield rate of 630.5 µg h
−1
cm
−2
with a faradaic efficiency of 81.9% at −1.06 V
vs.
RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO
2
. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.
A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO
2
is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta06800a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Agricultural pollution ; Agricultural wastes ; Ammonia ; Atomic layer epitaxy ; Carbon ; Carbon nanotubes ; Carbon sources ; Chemical activity ; Chemical reduction ; Electrocatalysts ; Electrochemistry ; Electrodes ; Environmental impact ; Environmental monitoring ; Fabrication ; Impurities ; Industrial pollution ; Industrial wastes ; Industrial wastewater ; Nanotechnology ; Nanotubes ; Nitrites ; Oxidation ; Substrates ; Surface chemistry ; Three dimensional printing ; Titanium dioxide ; Wastewater treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</cites><orcidid>0000-0001-5846-2951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gao, Wanli</creatorcontrib><creatorcontrib>Michali ka, Jan</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO
2
OR) and nitrite reduction reaction (NO
2
RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO
2
. The resulting TiO
2
-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO
2
OR, it exhibits a peak current density of 0.75 mA cm
−2
at 1.53 V
vs.
RHE, while for NO
2
RR, it achieves a yield rate of 630.5 µg h
−1
cm
−2
with a faradaic efficiency of 81.9% at −1.06 V
vs.
RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO
2
. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.
A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO
2
is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</description><subject>Agricultural pollution</subject><subject>Agricultural wastes</subject><subject>Ammonia</subject><subject>Atomic layer epitaxy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carbon sources</subject><subject>Chemical activity</subject><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Fabrication</subject><subject>Impurities</subject><subject>Industrial pollution</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nitrites</subject><subject>Oxidation</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Three dimensional printing</subject><subject>Titanium dioxide</subject><subject>Wastewater treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN2E1u0k3ybG0fkHBSz0v02RWU7pJTbJg_3vXVupcZgZ-8x7zCLku2X3JuH6wIgOrFWNwRkYVm7JCCl2fn2alLskkpQ0baqBqrUckz3LonKG5985_0NBSvqC76HxGSw3EdfA09bEFg9R8YudSjnvahkhxiybHYCDDdp8HCe9ydBlp-HYWshsOwVsa0fbmsOVAoeuCd3BFLlrYJpz89TF5f3pczV-K5dvz63y2LEwpWS7KtWBTQF4BWC2U1dZUFlvGQQsraqUkIrcGEKxUoNaIpkbV6kpYLVkl-JjcHnV3MXz1mHKzCX30g2XDS15JOZWyHKi7I2ViSCli2wz_dxD3Tcma32CbhVjNDsHOBvjmCMdkTtx_8PwHNBV3hw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Gao, Wanli</creator><creator>Michali ka, Jan</creator><creator>Pumera, Martin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></search><sort><creationdate>20241126</creationdate><title>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</title><author>Gao, Wanli ; Michali ka, Jan ; Pumera, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural pollution</topic><topic>Agricultural wastes</topic><topic>Ammonia</topic><topic>Atomic layer epitaxy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carbon sources</topic><topic>Chemical activity</topic><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Fabrication</topic><topic>Impurities</topic><topic>Industrial pollution</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nitrites</topic><topic>Oxidation</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Three dimensional printing</topic><topic>Titanium dioxide</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wanli</creatorcontrib><creatorcontrib>Michali ka, Jan</creatorcontrib><creatorcontrib>Pumera, Martin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wanli</au><au>Michali ka, Jan</au><au>Pumera, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-11-26</date><risdate>2024</risdate><volume>12</volume><issue>46</issue><spage>32458</spage><epage>3247</epage><pages>32458-3247</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO
2
OR) and nitrite reduction reaction (NO
2
RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO
2
. The resulting TiO
2
-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO
2
OR, it exhibits a peak current density of 0.75 mA cm
−2
at 1.53 V
vs.
RHE, while for NO
2
RR, it achieves a yield rate of 630.5 µg h
−1
cm
−2
with a faradaic efficiency of 81.9% at −1.06 V
vs.
RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO
2
. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.
A bifunctional electrode integrating 3D printed carbon materials with atomic layer deposition of TiO
2
is developed for electrochemical nitrite oxidation and reduction, providing effective surface engineering for nitrite monitoring and remediation.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta06800a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5846-2951</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32458-3247 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3132775771 |
source | Royal Society of Chemistry Journals |
subjects | Agricultural pollution Agricultural wastes Ammonia Atomic layer epitaxy Carbon Carbon nanotubes Carbon sources Chemical activity Chemical reduction Electrocatalysts Electrochemistry Electrodes Environmental impact Environmental monitoring Fabrication Impurities Industrial pollution Industrial wastes Industrial wastewater Nanotechnology Nanotubes Nitrites Oxidation Substrates Surface chemistry Three dimensional printing Titanium dioxide Wastewater treatment |
title | Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20tuning%20of%203D%20printed%20carbon%20surface%20chemistry%20for%20electrocatalytic%20nitrite%20oxidation%20and%20reduction%20to%20ammonia&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gao,%20Wanli&rft.date=2024-11-26&rft.volume=12&rft.issue=46&rft.spage=32458&rft.epage=3247&rft.pages=32458-3247&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta06800a&rft_dat=%3Cproquest_rsc_p%3E3132775771%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-1b405ae32aad948d9dc2def03a94d46887ee3dcaead78a8beec6e8f924d970243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132775771&rft_id=info:pmid/&rfr_iscdi=true |