Loading…
Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite
The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinfo...
Saved in:
Published in: | Biomass conversion and biorefinery 2024, Vol.14 (23), p.29843-29852 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23 |
container_end_page | 29852 |
container_issue | 23 |
container_start_page | 29843 |
container_title | Biomass conversion and biorefinery |
container_volume | 14 |
creator | Giridharan, K. Sasirekha, S. Padmanabhan, S. Chakravarthi, G. Stalin, B. |
description | The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure. |
doi_str_mv | 10.1007/s13399-023-04841-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132823264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132823264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsGhfwKuAt13Nz7bZvSy1_kDFG70O2WRSU7ZJTLZgX8JnNmtFvRIGZpj55hw4RXFB8BXBmF8nwljTlJiyEld1RUp6VIwoaXA5qyk7_pnJ9LQYp7TBOKOc1QyPio-lMaB65A1aRwCHAkgUvEadXTvrkNTa9tY7lKt_hbiVHdKwjlLLYT1BppNbQBGSTb10Cibo5nE-QdJppLJg-HMaTIJ1IEPoABnbRkAQ_PseKb8NPtkezosTI7sE4-9-VrzcLp8X9-Xq6e5hMV-VinLcl8Bb1RKgALWuuFGSG8anpKacGADcSoYZNa2ZKsxNI3VTZaZuoVKc0VpTdlZcHnRD9G87SL3Y-F102VIwkhHK6KzKFD1QKvqUIhgRot3KuBcEiyF6cYhe5DzFV_RikGaHp5Rht4b4K_3P1ydVXokB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823264</pqid></control><display><type>article</type><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><source>Springer Nature</source><creator>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</creator><creatorcontrib>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</creatorcontrib><description>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-023-04841-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Creep strength ; Decomposition ; Energy ; Fiber composites ; Fiber reinforced polymers ; Fire resistance ; Flammability ; Household wastes ; Lignin ; Original Article ; Peas ; Pineapples ; Pressure molding ; Renewable and Green Energy ; Storage modulus ; Thermal degradation ; Thermal resistance ; Thermal stability</subject><ispartof>Biomass conversion and biorefinery, 2024, Vol.14 (23), p.29843-29852</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Giridharan, K.</creatorcontrib><creatorcontrib>Sasirekha, S.</creatorcontrib><creatorcontrib>Padmanabhan, S.</creatorcontrib><creatorcontrib>Chakravarthi, G.</creatorcontrib><creatorcontrib>Stalin, B.</creatorcontrib><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</description><subject>Biotechnology</subject><subject>Creep strength</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fire resistance</subject><subject>Flammability</subject><subject>Household wastes</subject><subject>Lignin</subject><subject>Original Article</subject><subject>Peas</subject><subject>Pineapples</subject><subject>Pressure molding</subject><subject>Renewable and Green Energy</subject><subject>Storage modulus</subject><subject>Thermal degradation</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhRdRsGhfwKuAt13Nz7bZvSy1_kDFG70O2WRSU7ZJTLZgX8JnNmtFvRIGZpj55hw4RXFB8BXBmF8nwljTlJiyEld1RUp6VIwoaXA5qyk7_pnJ9LQYp7TBOKOc1QyPio-lMaB65A1aRwCHAkgUvEadXTvrkNTa9tY7lKt_hbiVHdKwjlLLYT1BppNbQBGSTb10Cibo5nE-QdJppLJg-HMaTIJ1IEPoABnbRkAQ_PseKb8NPtkezosTI7sE4-9-VrzcLp8X9-Xq6e5hMV-VinLcl8Bb1RKgALWuuFGSG8anpKacGADcSoYZNa2ZKsxNI3VTZaZuoVKc0VpTdlZcHnRD9G87SL3Y-F102VIwkhHK6KzKFD1QKvqUIhgRot3KuBcEiyF6cYhe5DzFV_RikGaHp5Rht4b4K_3P1ydVXokB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Giridharan, K.</creator><creator>Sasirekha, S.</creator><creator>Padmanabhan, S.</creator><creator>Chakravarthi, G.</creator><creator>Stalin, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><author>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotechnology</topic><topic>Creep strength</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fire resistance</topic><topic>Flammability</topic><topic>Household wastes</topic><topic>Lignin</topic><topic>Original Article</topic><topic>Peas</topic><topic>Pineapples</topic><topic>Pressure molding</topic><topic>Renewable and Green Energy</topic><topic>Storage modulus</topic><topic>Thermal degradation</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Giridharan, K.</creatorcontrib><creatorcontrib>Sasirekha, S.</creatorcontrib><creatorcontrib>Padmanabhan, S.</creatorcontrib><creatorcontrib>Chakravarthi, G.</creatorcontrib><creatorcontrib>Stalin, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giridharan, K.</au><au>Sasirekha, S.</au><au>Padmanabhan, S.</au><au>Chakravarthi, G.</au><au>Stalin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>23</issue><spage>29843</spage><epage>29852</epage><pages>29843-29852</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-023-04841-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-6815 |
ispartof | Biomass conversion and biorefinery, 2024, Vol.14 (23), p.29843-29852 |
issn | 2190-6815 2190-6823 |
language | eng |
recordid | cdi_proquest_journals_3132823264 |
source | Springer Nature |
subjects | Biotechnology Creep strength Decomposition Energy Fiber composites Fiber reinforced polymers Fire resistance Flammability Household wastes Lignin Original Article Peas Pineapples Pressure molding Renewable and Green Energy Storage modulus Thermal degradation Thermal resistance Thermal stability |
title | Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20green%20pea%20pod%20lignin%20addition%20on%20thermal%20degradation,%20flame%20resistance,%20DMA,%20and%20creep%20resistance%20of%20pineapple%20fibre%20epoxy%20composite&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Giridharan,%20K.&rft.date=2024&rft.volume=14&rft.issue=23&rft.spage=29843&rft.epage=29852&rft.pages=29843-29852&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-023-04841-2&rft_dat=%3Cproquest_cross%3E3132823264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132823264&rft_id=info:pmid/&rfr_iscdi=true |