Loading…

Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite

The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinfo...

Full description

Saved in:
Bibliographic Details
Published in:Biomass conversion and biorefinery 2024, Vol.14 (23), p.29843-29852
Main Authors: Giridharan, K., Sasirekha, S., Padmanabhan, S., Chakravarthi, G., Stalin, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23
container_end_page 29852
container_issue 23
container_start_page 29843
container_title Biomass conversion and biorefinery
container_volume 14
creator Giridharan, K.
Sasirekha, S.
Padmanabhan, S.
Chakravarthi, G.
Stalin, B.
description The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.
doi_str_mv 10.1007/s13399-023-04841-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3132823264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132823264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsGhfwKuAt13Nz7bZvSy1_kDFG70O2WRSU7ZJTLZgX8JnNmtFvRIGZpj55hw4RXFB8BXBmF8nwljTlJiyEld1RUp6VIwoaXA5qyk7_pnJ9LQYp7TBOKOc1QyPio-lMaB65A1aRwCHAkgUvEadXTvrkNTa9tY7lKt_hbiVHdKwjlLLYT1BppNbQBGSTb10Cibo5nE-QdJppLJg-HMaTIJ1IEPoABnbRkAQ_PseKb8NPtkezosTI7sE4-9-VrzcLp8X9-Xq6e5hMV-VinLcl8Bb1RKgALWuuFGSG8anpKacGADcSoYZNa2ZKsxNI3VTZaZuoVKc0VpTdlZcHnRD9G87SL3Y-F102VIwkhHK6KzKFD1QKvqUIhgRot3KuBcEiyF6cYhe5DzFV_RikGaHp5Rht4b4K_3P1ydVXokB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132823264</pqid></control><display><type>article</type><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><source>Springer Nature</source><creator>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</creator><creatorcontrib>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</creatorcontrib><description>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-023-04841-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Creep strength ; Decomposition ; Energy ; Fiber composites ; Fiber reinforced polymers ; Fire resistance ; Flammability ; Household wastes ; Lignin ; Original Article ; Peas ; Pineapples ; Pressure molding ; Renewable and Green Energy ; Storage modulus ; Thermal degradation ; Thermal resistance ; Thermal stability</subject><ispartof>Biomass conversion and biorefinery, 2024, Vol.14 (23), p.29843-29852</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Giridharan, K.</creatorcontrib><creatorcontrib>Sasirekha, S.</creatorcontrib><creatorcontrib>Padmanabhan, S.</creatorcontrib><creatorcontrib>Chakravarthi, G.</creatorcontrib><creatorcontrib>Stalin, B.</creatorcontrib><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</description><subject>Biotechnology</subject><subject>Creep strength</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fire resistance</subject><subject>Flammability</subject><subject>Household wastes</subject><subject>Lignin</subject><subject>Original Article</subject><subject>Peas</subject><subject>Pineapples</subject><subject>Pressure molding</subject><subject>Renewable and Green Energy</subject><subject>Storage modulus</subject><subject>Thermal degradation</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhRdRsGhfwKuAt13Nz7bZvSy1_kDFG70O2WRSU7ZJTLZgX8JnNmtFvRIGZpj55hw4RXFB8BXBmF8nwljTlJiyEld1RUp6VIwoaXA5qyk7_pnJ9LQYp7TBOKOc1QyPio-lMaB65A1aRwCHAkgUvEadXTvrkNTa9tY7lKt_hbiVHdKwjlLLYT1BppNbQBGSTb10Cibo5nE-QdJppLJg-HMaTIJ1IEPoABnbRkAQ_PseKb8NPtkezosTI7sE4-9-VrzcLp8X9-Xq6e5hMV-VinLcl8Bb1RKgALWuuFGSG8anpKacGADcSoYZNa2ZKsxNI3VTZaZuoVKc0VpTdlZcHnRD9G87SL3Y-F102VIwkhHK6KzKFD1QKvqUIhgRot3KuBcEiyF6cYhe5DzFV_RikGaHp5Rht4b4K_3P1ydVXokB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Giridharan, K.</creator><creator>Sasirekha, S.</creator><creator>Padmanabhan, S.</creator><creator>Chakravarthi, G.</creator><creator>Stalin, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</title><author>Giridharan, K. ; Sasirekha, S. ; Padmanabhan, S. ; Chakravarthi, G. ; Stalin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biotechnology</topic><topic>Creep strength</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fire resistance</topic><topic>Flammability</topic><topic>Household wastes</topic><topic>Lignin</topic><topic>Original Article</topic><topic>Peas</topic><topic>Pineapples</topic><topic>Pressure molding</topic><topic>Renewable and Green Energy</topic><topic>Storage modulus</topic><topic>Thermal degradation</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Giridharan, K.</creatorcontrib><creatorcontrib>Sasirekha, S.</creatorcontrib><creatorcontrib>Padmanabhan, S.</creatorcontrib><creatorcontrib>Chakravarthi, G.</creatorcontrib><creatorcontrib>Stalin, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giridharan, K.</au><au>Sasirekha, S.</au><au>Padmanabhan, S.</au><au>Chakravarthi, G.</au><au>Stalin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>23</issue><spage>29843</spage><epage>29852</epage><pages>29843-29852</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>The objective of this work was to produce and use green pea pod lignin for improving the thermal stability, flammability, and creep resistance of pineapple fibre-reinforced epoxy composite. The lignin macromolecules are derived from waste green pea pods via thermo-chemical process and used as reinforcement. The composites were made using the compression moulding method followed by post curing at 120°C. The prepared composites are then machined for testing according to ASTM standards. The results of this research demonstrate that the decomposition temperature of the composite known as EF is improved by the incorporation of pineapple woven mats by a volume of 40%. Comparing to all the composite designations, the EFL3 offers the least loss of weight, the highest decomposition temperature (approximately 420°C), the highest storage modulus (about 7.5 GPa), and the lowest loss tangent (0.6). Accordingly, the EFL3 composite designation has been reported to have the lowest combustion rate of 5.88 mm/min and the highest DSC value of 0.6 mW/mg. However, the creep strain is reduced when adding lignin by 0.5, 1.0, and 2.0 vol. %. These eco-friendly waste converted green pea pod lignin strengthened pineapple fibre-epoxy composites could be used in high thermal applications including automotive insulation panels and domestic infrastructure.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-023-04841-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2024, Vol.14 (23), p.29843-29852
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_3132823264
source Springer Nature
subjects Biotechnology
Creep strength
Decomposition
Energy
Fiber composites
Fiber reinforced polymers
Fire resistance
Flammability
Household wastes
Lignin
Original Article
Peas
Pineapples
Pressure molding
Renewable and Green Energy
Storage modulus
Thermal degradation
Thermal resistance
Thermal stability
title Effect of green pea pod lignin addition on thermal degradation, flame resistance, DMA, and creep resistance of pineapple fibre epoxy composite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20green%20pea%20pod%20lignin%20addition%20on%20thermal%20degradation,%20flame%20resistance,%20DMA,%20and%20creep%20resistance%20of%20pineapple%20fibre%20epoxy%20composite&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Giridharan,%20K.&rft.date=2024&rft.volume=14&rft.issue=23&rft.spage=29843&rft.epage=29852&rft.pages=29843-29852&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-023-04841-2&rft_dat=%3Cproquest_cross%3E3132823264%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-e7bcb1e2ee8d47fca7f37518271fee0ba3032fbf5c07f9ad94fca8be4c7328d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132823264&rft_id=info:pmid/&rfr_iscdi=true