Loading…

Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency

We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Hu, Jerry Yao-Chieh, Wei-Po, Wang, Gilani, Ammar, Li, Chenyang, Zhao, Song, Liu, Han
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hu, Jerry Yao-Chieh
Wei-Po, Wang
Gilani, Ammar
Li, Chenyang
Zhao, Song
Liu, Han
description We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-\(dL\) and -in-\((1/\epsilon)\) lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133044004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133044004</sourcerecordid><originalsourceid>FETCH-proquest_journals_31330440043</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KBrwtxmRVdROnToYHSUoVtM9JttM_Df56Ef0Ok9eG9FIsZ5mpwFYxsSe99RStnxxLKMR-RZTtjKQWGQPdzMYIIHq-Hu7DAGqCY0-ILKSfTaukE5f4EHms8isjdhPkAuR9ksBhJbKLQ2jVHYzDuy1rL3Kv5xS_ZlUeXXZHT2PSkf6s5ODpdU85RzKgSlgv93fQF0sEGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133044004</pqid></control><display><type>article</type><title>Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hu, Jerry Yao-Chieh ; Wei-Po, Wang ; Gilani, Ammar ; Li, Chenyang ; Zhao, Song ; Liu, Han</creator><creatorcontrib>Hu, Jerry Yao-Chieh ; Wei-Po, Wang ; Gilani, Ammar ; Li, Chenyang ; Zhao, Song ; Liu, Han</creatorcontrib><description>We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-\(dL\) and -in-\((1/\epsilon)\) lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Criteria ; Lower bounds ; Phase transitions ; Upper bounds</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133044004?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Hu, Jerry Yao-Chieh</creatorcontrib><creatorcontrib>Wei-Po, Wang</creatorcontrib><creatorcontrib>Gilani, Ammar</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhao, Song</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><title>Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency</title><title>arXiv.org</title><description>We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-\(dL\) and -in-\((1/\epsilon)\) lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.</description><subject>Algorithms</subject><subject>Criteria</subject><subject>Lower bounds</subject><subject>Phase transitions</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KBrwtxmRVdROnToYHSUoVtM9JttM_Df56Ef0Ok9eG9FIsZ5mpwFYxsSe99RStnxxLKMR-RZTtjKQWGQPdzMYIIHq-Hu7DAGqCY0-ILKSfTaukE5f4EHms8isjdhPkAuR9ksBhJbKLQ2jVHYzDuy1rL3Kv5xS_ZlUeXXZHT2PSkf6s5ODpdU85RzKgSlgv93fQF0sEGm</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Hu, Jerry Yao-Chieh</creator><creator>Wei-Po, Wang</creator><creator>Gilani, Ammar</creator><creator>Li, Chenyang</creator><creator>Zhao, Song</creator><creator>Liu, Han</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241125</creationdate><title>Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency</title><author>Hu, Jerry Yao-Chieh ; Wei-Po, Wang ; Gilani, Ammar ; Li, Chenyang ; Zhao, Song ; Liu, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31330440043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Criteria</topic><topic>Lower bounds</topic><topic>Phase transitions</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jerry Yao-Chieh</creatorcontrib><creatorcontrib>Wei-Po, Wang</creatorcontrib><creatorcontrib>Gilani, Ammar</creatorcontrib><creatorcontrib>Li, Chenyang</creatorcontrib><creatorcontrib>Zhao, Song</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jerry Yao-Chieh</au><au>Wei-Po, Wang</au><au>Gilani, Ammar</au><au>Li, Chenyang</au><au>Zhao, Song</au><au>Liu, Han</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency</atitle><jtitle>arXiv.org</jtitle><date>2024-11-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \textit{single-head} transformers with only a \textit{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-\(dL\) and -in-\((1/\epsilon)\) lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \textit{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133044004
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Criteria
Lower bounds
Phase transitions
Upper bounds
title Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fundamental%20Limits%20of%20Prompt%20Tuning%20Transformers:%20Universality,%20Capacity%20and%20Efficiency&rft.jtitle=arXiv.org&rft.au=Hu,%20Jerry%20Yao-Chieh&rft.date=2024-11-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133044004%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31330440043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133044004&rft_id=info:pmid/&rfr_iscdi=true