Loading…
Image Dehazing Technique Based on DenseNet and the Denoising Self-Encoder
The application value of low-quality photos taken in foggy conditions is significantly lower than that of clear images. As a result, restoring the original image information and enhancing the quality of damaged images on cloudy days are crucial. Commonly used deep learning techniques like DehazeNet,...
Saved in:
Published in: | Processes 2024-11, Vol.12 (11), p.2568 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application value of low-quality photos taken in foggy conditions is significantly lower than that of clear images. As a result, restoring the original image information and enhancing the quality of damaged images on cloudy days are crucial. Commonly used deep learning techniques like DehazeNet, AOD-Net, and Li have shown encouraging progress in the study of image dehazing applications. However, these methods suffer from a shallow network structure leading to limited network estimation capability, reliance on atmospheric scattering models to generate the final results that are prone to error accumulation, as well as unstable training and slow convergence. Aiming at these problems, this paper proposes an improved end-to-end convolutional neural network method based on the denoising self-encoder-DenseNet (DAE-DenseNet), where the denoising self-encoder is used as the main body of the network structure, the encoder extracts the features of haze images, the decoder performs the feature reconstruction to recover the image, and the boosting module further performs the feature fusion locally and globally, and finally outputs the dehazed image. Testing the defogging effect in the public dataset, the PSNR index of DAE-DenseNet is 22.60, which is much higher than other methods. Experiments have proved that the dehazing method designed in this paper is better than other algorithms to a certain extent, and there is no color oversaturation or an excessive dehazing phenomenon in the image after dehazing. The dehazing results are the closest to the real image and the viewing experience feels natural and comfortable, with the image dehazing effect being very competitive. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12112568 |