Loading…

Land-Use Impacts on Soil Erosion: Geochemical Insights from an Urban Drinking Catchment, South-Central Chile

We investigate the influence of land use and land cover (LU/LC) changes on soil erosion and chemical weathering processes within the Nonguén watershed in the Coastal Cordillera of south-central Chile. The watershed is divided into three sub-basins, each characterized by distinct LU/LC patterns: nati...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2024-11, Vol.16 (22), p.3246
Main Authors: Contreras, Angela, Álvarez-Amado, Fernanda, Aguilar-Gomez, Maite, Campos-Quiroz, Dilan, Castillo, Pamela, Tardani, Daniele, Poblete-González, Camila, Cortés-Aranda, Joaquín, Godfrey, Linda, Orellana-Silva, Nicolás
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the influence of land use and land cover (LU/LC) changes on soil erosion and chemical weathering processes within the Nonguén watershed in the Coastal Cordillera of south-central Chile. The watershed is divided into three sub-basins, each characterized by distinct LU/LC patterns: native forest and exotic plantations. A comprehensive geochemical analysis, including trace elements and lithium (Li) isotopes, was conducted on river water and suspended sediment samples collected from streams within these sub-basins to assess how land management practices, particularly plantation activities, influence the geochemical composition of river systems. Our results show that sub-basins dominated by exotic plantations exhibit significantly higher concentrations of major and trace elements in suspended sediments compared to sub-basins dominated by native forests. The elevated trace element concentrations are primarily attributed to increased physical erosion due to forestry activities such as clear-cutting and soil disturbance, which enhance sediment mobilization. Notably, concentrations of elements such as Fe, Al, and As in plantation-dominated sub-basins are raised to ten times higher than in native-dominated sub-basins. In contrast, sub-basins with native forest cover exhibit lower levels of sediment transport and trace element mobilization, suggesting that native vegetation exerts a stabilizing effect that mitigates soil erosion. Despite the substantial differences in sediment transport and element concentrations, Li isotopic data (δ7Li) show minimal fractionation across the different LU/LC types. This indicates that land use changes impact the chemical weathering processes less compared to physical erosion. The isotopic signatures suggest that physical erosion, rather than chemical weathering, is the dominant process influencing trace element distribution in plantation-dominated areas. The study provides critical insights into how forestry practices, specifically the expansion of exotic plantations, accelerate soil degradation and affect the geochemical composition of river systems. The increased sediment loads, and trace element concentrations observed in plantation-dominated sub-basins, raise concerns about the long-term sustainability of forest management practices, particularly regarding their impacts on water quality in urban catchment areas. These results are of significant relevance for environmental management and policy, as they underscore th
ISSN:2073-4441
2073-4441
DOI:10.3390/w16223246