Loading…

QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity

This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-12, Vol.24 (23), p.38843-38850
Main Authors: Abu-Libdeh, Aya, Elnemr, Youssef Ezzat, Raj, Gian Carlo Antony, Ye, Bruce Shilin, Rinzan, Mohamed, Emadi, Arezoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723
container_end_page 38850
container_issue 23
container_start_page 38843
container_title IEEE sensors journal
container_volume 24
creator Abu-Libdeh, Aya
Elnemr, Youssef Ezzat
Raj, Gian Carlo Antony
Ye, Bruce Shilin
Rinzan, Mohamed
Emadi, Arezoo
description This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.
doi_str_mv 10.1109/JSEN.2024.3477264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133498128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10719634</ieee_id><sourcerecordid>3133498128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3yVHW9bNVpAreQppNNKXu1mRX6L-3S3vwNC_M887Ag9A5kAkAUVeP8-p5QgnlE8aFoAU_QCPIc5mB4PJwyIxknImPY3SS0pIQUCIXI_T0Ws5wtXK2i23tcNk2Pnz20XShbRL2bcRV82Ua62o8Mynhm5C6GBb9sMemqfHcNSl04Td0m1N05M0qubP9HKP32-qtvM-mL3cP5fU0syCKLvPcGuCKcMuYcE4Zsyi4VULCwhYKrLSCmhykZ57XUjjinYCag6WUSyMoG6PL3d11bH96lzq9bPvYbF9qBoxxJYHKLQU7ysY2pei8XsfwbeJGA9GDMz0404MzvXe27VzsOsE5948XoArG2R9auGgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133498128</pqid></control><display><type>article</type><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creator><creatorcontrib>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creatorcontrib><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3477264</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Configuration management ; Electrodes ; Energy trapping effect ; Finite element method ; Frequency shift ; gravimetric sensing ; Impact analysis ; Load modeling ; Loading ; Mass distribution ; mass sensitivity ; Mathematical models ; microfabrication ; Parameter identification ; Parameter sensitivity ; piezoelectricity ; quartz crystal microbalance (QCM) ; Quartz crystals ; Resonant frequencies ; Resonant frequency ; Sensitivity ; Sensors ; Topology ; Trapping ; Voltage ; Water vapor</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</cites><orcidid>0009-0009-4363-2888 ; 0000-0003-1336-8149 ; 0000-0003-2034-1120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10719634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><subject>Configuration management</subject><subject>Electrodes</subject><subject>Energy trapping effect</subject><subject>Finite element method</subject><subject>Frequency shift</subject><subject>gravimetric sensing</subject><subject>Impact analysis</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Mass distribution</subject><subject>mass sensitivity</subject><subject>Mathematical models</subject><subject>microfabrication</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>piezoelectricity</subject><subject>quartz crystal microbalance (QCM)</subject><subject>Quartz crystals</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Topology</subject><subject>Trapping</subject><subject>Voltage</subject><subject>Water vapor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3yVHW9bNVpAreQppNNKXu1mRX6L-3S3vwNC_M887Ag9A5kAkAUVeP8-p5QgnlE8aFoAU_QCPIc5mB4PJwyIxknImPY3SS0pIQUCIXI_T0Ws5wtXK2i23tcNk2Pnz20XShbRL2bcRV82Ua62o8Mynhm5C6GBb9sMemqfHcNSl04Td0m1N05M0qubP9HKP32-qtvM-mL3cP5fU0syCKLvPcGuCKcMuYcE4Zsyi4VULCwhYKrLSCmhykZ57XUjjinYCag6WUSyMoG6PL3d11bH96lzq9bPvYbF9qBoxxJYHKLQU7ysY2pei8XsfwbeJGA9GDMz0404MzvXe27VzsOsE5948XoArG2R9auGgJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abu-Libdeh, Aya</creator><creator>Elnemr, Youssef Ezzat</creator><creator>Raj, Gian Carlo Antony</creator><creator>Ye, Bruce Shilin</creator><creator>Rinzan, Mohamed</creator><creator>Emadi, Arezoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></search><sort><creationdate>20241201</creationdate><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><author>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configuration management</topic><topic>Electrodes</topic><topic>Energy trapping effect</topic><topic>Finite element method</topic><topic>Frequency shift</topic><topic>gravimetric sensing</topic><topic>Impact analysis</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Mass distribution</topic><topic>mass sensitivity</topic><topic>Mathematical models</topic><topic>microfabrication</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>piezoelectricity</topic><topic>quartz crystal microbalance (QCM)</topic><topic>Quartz crystals</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Topology</topic><topic>Trapping</topic><topic>Voltage</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Libdeh, Aya</au><au>Elnemr, Youssef Ezzat</au><au>Raj, Gian Carlo Antony</au><au>Ye, Bruce Shilin</au><au>Rinzan, Mohamed</au><au>Emadi, Arezoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>38843</spage><epage>38850</epage><pages>38843-38850</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3477264</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3133498128
source IEEE Electronic Library (IEL) Journals
subjects Configuration management
Electrodes
Energy trapping effect
Finite element method
Frequency shift
gravimetric sensing
Impact analysis
Load modeling
Loading
Mass distribution
mass sensitivity
Mathematical models
microfabrication
Parameter identification
Parameter sensitivity
piezoelectricity
quartz crystal microbalance (QCM)
Quartz crystals
Resonant frequencies
Resonant frequency
Sensitivity
Sensors
Topology
Trapping
Voltage
Water vapor
title QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T07%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QCM%20Electrode%20Configurations%20for%20Enhanced%20Mass%20Distribution%20and%20Sensitivity&rft.jtitle=IEEE%20sensors%20journal&rft.au=Abu-Libdeh,%20Aya&rft.date=2024-12-01&rft.volume=24&rft.issue=23&rft.spage=38843&rft.epage=38850&rft.pages=38843-38850&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3477264&rft_dat=%3Cproquest_cross%3E3133498128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133498128&rft_id=info:pmid/&rft_ieee_id=10719634&rfr_iscdi=true