Loading…
QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity
This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impac...
Saved in:
Published in: | IEEE sensors journal 2024-12, Vol.24 (23), p.38843-38850 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723 |
container_end_page | 38850 |
container_issue | 23 |
container_start_page | 38843 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Abu-Libdeh, Aya Elnemr, Youssef Ezzat Raj, Gian Carlo Antony Ye, Bruce Shilin Rinzan, Mohamed Emadi, Arezoo |
description | This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design. |
doi_str_mv | 10.1109/JSEN.2024.3477264 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3133498128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10719634</ieee_id><sourcerecordid>3133498128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3yVHW9bNVpAreQppNNKXu1mRX6L-3S3vwNC_M887Ag9A5kAkAUVeP8-p5QgnlE8aFoAU_QCPIc5mB4PJwyIxknImPY3SS0pIQUCIXI_T0Ws5wtXK2i23tcNk2Pnz20XShbRL2bcRV82Ua62o8Mynhm5C6GBb9sMemqfHcNSl04Td0m1N05M0qubP9HKP32-qtvM-mL3cP5fU0syCKLvPcGuCKcMuYcE4Zsyi4VULCwhYKrLSCmhykZ57XUjjinYCag6WUSyMoG6PL3d11bH96lzq9bPvYbF9qBoxxJYHKLQU7ysY2pei8XsfwbeJGA9GDMz0404MzvXe27VzsOsE5948XoArG2R9auGgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133498128</pqid></control><display><type>article</type><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creator><creatorcontrib>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creatorcontrib><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3477264</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Configuration management ; Electrodes ; Energy trapping effect ; Finite element method ; Frequency shift ; gravimetric sensing ; Impact analysis ; Load modeling ; Loading ; Mass distribution ; mass sensitivity ; Mathematical models ; microfabrication ; Parameter identification ; Parameter sensitivity ; piezoelectricity ; quartz crystal microbalance (QCM) ; Quartz crystals ; Resonant frequencies ; Resonant frequency ; Sensitivity ; Sensors ; Topology ; Trapping ; Voltage ; Water vapor</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</cites><orcidid>0009-0009-4363-2888 ; 0000-0003-1336-8149 ; 0000-0003-2034-1120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10719634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><subject>Configuration management</subject><subject>Electrodes</subject><subject>Energy trapping effect</subject><subject>Finite element method</subject><subject>Frequency shift</subject><subject>gravimetric sensing</subject><subject>Impact analysis</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Mass distribution</subject><subject>mass sensitivity</subject><subject>Mathematical models</subject><subject>microfabrication</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>piezoelectricity</subject><subject>quartz crystal microbalance (QCM)</subject><subject>Quartz crystals</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Topology</subject><subject>Trapping</subject><subject>Voltage</subject><subject>Water vapor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k2Q3yVHW9bNVpAreQppNNKXu1mRX6L-3S3vwNC_M887Ag9A5kAkAUVeP8-p5QgnlE8aFoAU_QCPIc5mB4PJwyIxknImPY3SS0pIQUCIXI_T0Ws5wtXK2i23tcNk2Pnz20XShbRL2bcRV82Ua62o8Mynhm5C6GBb9sMemqfHcNSl04Td0m1N05M0qubP9HKP32-qtvM-mL3cP5fU0syCKLvPcGuCKcMuYcE4Zsyi4VULCwhYKrLSCmhykZ57XUjjinYCag6WUSyMoG6PL3d11bH96lzq9bPvYbF9qBoxxJYHKLQU7ysY2pei8XsfwbeJGA9GDMz0404MzvXe27VzsOsE5948XoArG2R9auGgJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abu-Libdeh, Aya</creator><creator>Elnemr, Youssef Ezzat</creator><creator>Raj, Gian Carlo Antony</creator><creator>Ye, Bruce Shilin</creator><creator>Rinzan, Mohamed</creator><creator>Emadi, Arezoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></search><sort><creationdate>20241201</creationdate><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><author>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configuration management</topic><topic>Electrodes</topic><topic>Energy trapping effect</topic><topic>Finite element method</topic><topic>Frequency shift</topic><topic>gravimetric sensing</topic><topic>Impact analysis</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Mass distribution</topic><topic>mass sensitivity</topic><topic>Mathematical models</topic><topic>microfabrication</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>piezoelectricity</topic><topic>quartz crystal microbalance (QCM)</topic><topic>Quartz crystals</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Topology</topic><topic>Trapping</topic><topic>Voltage</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Libdeh, Aya</au><au>Elnemr, Youssef Ezzat</au><au>Raj, Gian Carlo Antony</au><au>Ye, Bruce Shilin</au><au>Rinzan, Mohamed</au><au>Emadi, Arezoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>38843</spage><epage>38850</epage><pages>38843-38850</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3477264</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3133498128 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Configuration management Electrodes Energy trapping effect Finite element method Frequency shift gravimetric sensing Impact analysis Load modeling Loading Mass distribution mass sensitivity Mathematical models microfabrication Parameter identification Parameter sensitivity piezoelectricity quartz crystal microbalance (QCM) Quartz crystals Resonant frequencies Resonant frequency Sensitivity Sensors Topology Trapping Voltage Water vapor |
title | QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T07%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QCM%20Electrode%20Configurations%20for%20Enhanced%20Mass%20Distribution%20and%20Sensitivity&rft.jtitle=IEEE%20sensors%20journal&rft.au=Abu-Libdeh,%20Aya&rft.date=2024-12-01&rft.volume=24&rft.issue=23&rft.spage=38843&rft.epage=38850&rft.pages=38843-38850&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3477264&rft_dat=%3Cproquest_cross%3E3133498128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-f4ca14904c337ee9aab64c9781bc691c8c72a518f3f4d87e0fe71d41c2248a723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133498128&rft_id=info:pmid/&rft_ieee_id=10719634&rfr_iscdi=true |