Loading…

Regular Hessenberg varieties for the minimal indecomposable Hessenberg space

This paper investigates the geometry of regular Hessenberg varieties associated with the minimal indecomposable Hessenberg space in the flag variety of a complex reductive group. These varieties form a flat family of irreducible subvarieties of the flag variety, encompassing notable examples such as...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Insko, Erik, Precup, Martha, Woo, Alexander
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Insko, Erik
Precup, Martha
Woo, Alexander
description This paper investigates the geometry of regular Hessenberg varieties associated with the minimal indecomposable Hessenberg space in the flag variety of a complex reductive group. These varieties form a flat family of irreducible subvarieties of the flag variety, encompassing notable examples such as the Peterson variety and toric varieties linked to Weyl chambers. Our first main result computes the closures of affine cells that pave these varieties explicitly, establishing a correspondence between Hessenberg--Schubert varieties and regular Hessenberg varieties in smaller dimensional flag varieties. We also analyze the singular locus of these varieties, proving that all regular Hessenberg varieties are singular outside of the toric case. Specifically, we extend previous results on the singular locus of the Peterson variety to all Lie types. Additionally, we provide detailed descriptions of Hessenberg--Schubert variety inclusion relations, a combinatorial characterization of smooth Hessenberg--Schubert varieties, and simple formulas for their \(K\)-theory and cohomology classes. The paper also includes a classification of all singular permutation flags in each regular Hessenberg variety in type A, linking them to combinatorial patterns, and generalizes these findings using root-theoretic data to all Lie types.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133537940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133537940</sourcerecordid><originalsourceid>FETCH-proquest_journals_31335379403</originalsourceid><addsrcrecordid>eNqNiz0PgjAUABsTE4nyH5o4k5Q-EJ2NhsHJuJOCDyzpB_YVf78ODo5ON9zdgiUSIM_2hZQrlhKNQgi5q2RZQsIuVxxmowKvkQhdi2HgLxU0Ro3Eex94fCC32mmrDNfujp23kyfVGvx9aFIdbtiyV4Yw_XLNtufT7VhnU_DPGSk2o5-D-6gGcoASqkMh4L_qDZe-Pgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133537940</pqid></control><display><type>article</type><title>Regular Hessenberg varieties for the minimal indecomposable Hessenberg space</title><source>Publicly Available Content Database</source><creator>Insko, Erik ; Precup, Martha ; Woo, Alexander</creator><creatorcontrib>Insko, Erik ; Precup, Martha ; Woo, Alexander</creatorcontrib><description>This paper investigates the geometry of regular Hessenberg varieties associated with the minimal indecomposable Hessenberg space in the flag variety of a complex reductive group. These varieties form a flat family of irreducible subvarieties of the flag variety, encompassing notable examples such as the Peterson variety and toric varieties linked to Weyl chambers. Our first main result computes the closures of affine cells that pave these varieties explicitly, establishing a correspondence between Hessenberg--Schubert varieties and regular Hessenberg varieties in smaller dimensional flag varieties. We also analyze the singular locus of these varieties, proving that all regular Hessenberg varieties are singular outside of the toric case. Specifically, we extend previous results on the singular locus of the Peterson variety to all Lie types. Additionally, we provide detailed descriptions of Hessenberg--Schubert variety inclusion relations, a combinatorial characterization of smooth Hessenberg--Schubert varieties, and simple formulas for their \(K\)-theory and cohomology classes. The paper also includes a classification of all singular permutation flags in each regular Hessenberg variety in type A, linking them to combinatorial patterns, and generalizes these findings using root-theoretic data to all Lie types.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Dimensional analysis ; Flags ; Homology ; Loci ; Permutations</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133537940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Insko, Erik</creatorcontrib><creatorcontrib>Precup, Martha</creatorcontrib><creatorcontrib>Woo, Alexander</creatorcontrib><title>Regular Hessenberg varieties for the minimal indecomposable Hessenberg space</title><title>arXiv.org</title><description>This paper investigates the geometry of regular Hessenberg varieties associated with the minimal indecomposable Hessenberg space in the flag variety of a complex reductive group. These varieties form a flat family of irreducible subvarieties of the flag variety, encompassing notable examples such as the Peterson variety and toric varieties linked to Weyl chambers. Our first main result computes the closures of affine cells that pave these varieties explicitly, establishing a correspondence between Hessenberg--Schubert varieties and regular Hessenberg varieties in smaller dimensional flag varieties. We also analyze the singular locus of these varieties, proving that all regular Hessenberg varieties are singular outside of the toric case. Specifically, we extend previous results on the singular locus of the Peterson variety to all Lie types. Additionally, we provide detailed descriptions of Hessenberg--Schubert variety inclusion relations, a combinatorial characterization of smooth Hessenberg--Schubert varieties, and simple formulas for their \(K\)-theory and cohomology classes. The paper also includes a classification of all singular permutation flags in each regular Hessenberg variety in type A, linking them to combinatorial patterns, and generalizes these findings using root-theoretic data to all Lie types.</description><subject>Combinatorial analysis</subject><subject>Dimensional analysis</subject><subject>Flags</subject><subject>Homology</subject><subject>Loci</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiz0PgjAUABsTE4nyH5o4k5Q-EJ2NhsHJuJOCDyzpB_YVf78ODo5ON9zdgiUSIM_2hZQrlhKNQgi5q2RZQsIuVxxmowKvkQhdi2HgLxU0Ro3Eex94fCC32mmrDNfujp23kyfVGvx9aFIdbtiyV4Yw_XLNtufT7VhnU_DPGSk2o5-D-6gGcoASqkMh4L_qDZe-Pgc</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Insko, Erik</creator><creator>Precup, Martha</creator><creator>Woo, Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>Regular Hessenberg varieties for the minimal indecomposable Hessenberg space</title><author>Insko, Erik ; Precup, Martha ; Woo, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31335379403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Dimensional analysis</topic><topic>Flags</topic><topic>Homology</topic><topic>Loci</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Insko, Erik</creatorcontrib><creatorcontrib>Precup, Martha</creatorcontrib><creatorcontrib>Woo, Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Insko, Erik</au><au>Precup, Martha</au><au>Woo, Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Regular Hessenberg varieties for the minimal indecomposable Hessenberg space</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper investigates the geometry of regular Hessenberg varieties associated with the minimal indecomposable Hessenberg space in the flag variety of a complex reductive group. These varieties form a flat family of irreducible subvarieties of the flag variety, encompassing notable examples such as the Peterson variety and toric varieties linked to Weyl chambers. Our first main result computes the closures of affine cells that pave these varieties explicitly, establishing a correspondence between Hessenberg--Schubert varieties and regular Hessenberg varieties in smaller dimensional flag varieties. We also analyze the singular locus of these varieties, proving that all regular Hessenberg varieties are singular outside of the toric case. Specifically, we extend previous results on the singular locus of the Peterson variety to all Lie types. Additionally, we provide detailed descriptions of Hessenberg--Schubert variety inclusion relations, a combinatorial characterization of smooth Hessenberg--Schubert varieties, and simple formulas for their \(K\)-theory and cohomology classes. The paper also includes a classification of all singular permutation flags in each regular Hessenberg variety in type A, linking them to combinatorial patterns, and generalizes these findings using root-theoretic data to all Lie types.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133537940
source Publicly Available Content Database
subjects Combinatorial analysis
Dimensional analysis
Flags
Homology
Loci
Permutations
title Regular Hessenberg varieties for the minimal indecomposable Hessenberg space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Regular%20Hessenberg%20varieties%20for%20the%20minimal%20indecomposable%20Hessenberg%20space&rft.jtitle=arXiv.org&rft.au=Insko,%20Erik&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133537940%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31335379403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133537940&rft_id=info:pmid/&rfr_iscdi=true