Loading…
A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches
Two primary scalar auxiliary variable (SAV) approaches are widely applied for simulating gradient flow systems, i.e., the nonlinear energy-based approach and the Lagrange multiplier approach. The former guarantees unconditional energy stability through a modified energy formulation, whereas the latt...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Huang, Qiong-Ao Jiang, Wei Jerry Zhijian Yang Cheng, Yuan |
description | Two primary scalar auxiliary variable (SAV) approaches are widely applied for simulating gradient flow systems, i.e., the nonlinear energy-based approach and the Lagrange multiplier approach. The former guarantees unconditional energy stability through a modified energy formulation, whereas the latter preserves original energy stability but requires small time steps for numerical solutions. In this paper, we introduce a novel weighted SAV method which integrates these two approaches for the first time. Our method leverages the advantages of both approaches: (i) it ensures the existence of numerical solutions for any time step size with a sufficiently large weight coefficient; (ii) by using a weight coefficient smaller than one, it achieves a discrete energy closer to the original, potentially ensuring stability under mild conditions; and (iii) it maintains consistency in computational cost by utilizing the same time/spatial discretization formulas. We present several theorems and numerical experiments to validate the accuracy, energy stability and superiority of our proposed method. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133538457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133538457</sourcerecordid><originalsourceid>FETCH-proquest_journals_31335384573</originalsourceid><addsrcrecordid>eNqNjUFOwzAQRS0kJCroHUZiHSm1m7ZihxCIBUv21aSeOFMNdhg7Lb0EZ8ZIHIDVX_z3378yC-vcqtmtrb0xy5yPbdvazdZ2nVuY70c4E4exkId8QEEFnL9YGPUCJ1TGXgg-qIzJw5AUcpITxwBB0TPFAoOkc36AXtmH36KMBDFF4UhVRpE0XJoecz3A6OEN6zKG6pyl8CRM9XGaNOFhpHxnrgeUTMu_vDX3L8_vT69NBT5nymV_TLPGWu3dyrnO7dbd1v2P-gGgplbu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133538457</pqid></control><display><type>article</type><title>A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Huang, Qiong-Ao ; Jiang, Wei ; Jerry Zhijian Yang ; Cheng, Yuan</creator><creatorcontrib>Huang, Qiong-Ao ; Jiang, Wei ; Jerry Zhijian Yang ; Cheng, Yuan</creatorcontrib><description>Two primary scalar auxiliary variable (SAV) approaches are widely applied for simulating gradient flow systems, i.e., the nonlinear energy-based approach and the Lagrange multiplier approach. The former guarantees unconditional energy stability through a modified energy formulation, whereas the latter preserves original energy stability but requires small time steps for numerical solutions. In this paper, we introduce a novel weighted SAV method which integrates these two approaches for the first time. Our method leverages the advantages of both approaches: (i) it ensures the existence of numerical solutions for any time step size with a sufficiently large weight coefficient; (ii) by using a weight coefficient smaller than one, it achieves a discrete energy closer to the original, potentially ensuring stability under mild conditions; and (iii) it maintains consistency in computational cost by utilizing the same time/spatial discretization formulas. We present several theorems and numerical experiments to validate the accuracy, energy stability and superiority of our proposed method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy ; Gradient flow ; Lagrange multiplier ; Mathematical analysis ; Stability</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133538457?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Huang, Qiong-Ao</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Jerry Zhijian Yang</creatorcontrib><creatorcontrib>Cheng, Yuan</creatorcontrib><title>A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches</title><title>arXiv.org</title><description>Two primary scalar auxiliary variable (SAV) approaches are widely applied for simulating gradient flow systems, i.e., the nonlinear energy-based approach and the Lagrange multiplier approach. The former guarantees unconditional energy stability through a modified energy formulation, whereas the latter preserves original energy stability but requires small time steps for numerical solutions. In this paper, we introduce a novel weighted SAV method which integrates these two approaches for the first time. Our method leverages the advantages of both approaches: (i) it ensures the existence of numerical solutions for any time step size with a sufficiently large weight coefficient; (ii) by using a weight coefficient smaller than one, it achieves a discrete energy closer to the original, potentially ensuring stability under mild conditions; and (iii) it maintains consistency in computational cost by utilizing the same time/spatial discretization formulas. We present several theorems and numerical experiments to validate the accuracy, energy stability and superiority of our proposed method.</description><subject>Energy</subject><subject>Gradient flow</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjUFOwzAQRS0kJCroHUZiHSm1m7ZihxCIBUv21aSeOFMNdhg7Lb0EZ8ZIHIDVX_z3378yC-vcqtmtrb0xy5yPbdvazdZ2nVuY70c4E4exkId8QEEFnL9YGPUCJ1TGXgg-qIzJw5AUcpITxwBB0TPFAoOkc36AXtmH36KMBDFF4UhVRpE0XJoecz3A6OEN6zKG6pyl8CRM9XGaNOFhpHxnrgeUTMu_vDX3L8_vT69NBT5nymV_TLPGWu3dyrnO7dbd1v2P-gGgplbu</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Huang, Qiong-Ao</creator><creator>Jiang, Wei</creator><creator>Jerry Zhijian Yang</creator><creator>Cheng, Yuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches</title><author>Huang, Qiong-Ao ; Jiang, Wei ; Jerry Zhijian Yang ; Cheng, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31335384573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy</topic><topic>Gradient flow</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qiong-Ao</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Jerry Zhijian Yang</creatorcontrib><creatorcontrib>Cheng, Yuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qiong-Ao</au><au>Jiang, Wei</au><au>Jerry Zhijian Yang</au><au>Cheng, Yuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Two primary scalar auxiliary variable (SAV) approaches are widely applied for simulating gradient flow systems, i.e., the nonlinear energy-based approach and the Lagrange multiplier approach. The former guarantees unconditional energy stability through a modified energy formulation, whereas the latter preserves original energy stability but requires small time steps for numerical solutions. In this paper, we introduce a novel weighted SAV method which integrates these two approaches for the first time. Our method leverages the advantages of both approaches: (i) it ensures the existence of numerical solutions for any time step size with a sufficiently large weight coefficient; (ii) by using a weight coefficient smaller than one, it achieves a discrete energy closer to the original, potentially ensuring stability under mild conditions; and (iii) it maintains consistency in computational cost by utilizing the same time/spatial discretization formulas. We present several theorems and numerical experiments to validate the accuracy, energy stability and superiority of our proposed method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3133538457 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Energy Gradient flow Lagrange multiplier Mathematical analysis Stability |
title | A weighted scalar auxiliary variable method for solving gradient flows: bridging the nonlinear energy-based and Lagrange multiplier approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20weighted%20scalar%20auxiliary%20variable%20method%20for%20solving%20gradient%20flows:%20bridging%20the%20nonlinear%20energy-based%20and%20Lagrange%20multiplier%20approaches&rft.jtitle=arXiv.org&rft.au=Huang,%20Qiong-Ao&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133538457%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31335384573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133538457&rft_id=info:pmid/&rfr_iscdi=true |