Loading…
Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Veronica Henao Isaza Aguillon, David Carlos Andres Tobon Quintero Lopera, Francisco John Fredy Ochoa Gomez |
description | Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133828231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133828231</sourcerecordid><originalsourceid>FETCH-proquest_journals_31338282313</originalsourceid><addsrcrecordid>eNqNi0FqwzAQAEUhkNDkDws9Gxwpbnx1jdNeekl7N6Jex5tIWlcrB9rX14Q-IKc5zMyDWmljtlm503qpNiLnPM_1814XhVkpX7MfIw4YhK4I75gG7tjx6Qd6jvBh_egQqunkMSSbiANQgKZ5hRdib-MF5yhNHaHchsr9Dkgeo8CR5AK1syLU09ftXatFb53g5p-P6unQfNZv2Rj5e0JJ7ZmnGGbVmq0xpS71zPuqPxZ-SfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133828231</pqid></control><display><type>article</type><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><source>Publicly Available Content Database</source><creator>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</creator><creatorcontrib>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</creatorcontrib><description>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alzheimer's disease ; Balancing ; Biomarkers ; Classification ; Data processing ; Decision trees ; Electroencephalography ; Impact analysis ; Machine learning ; Public health ; Risk ; Sample size ; Statistical methods</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133828231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Veronica Henao Isaza</creatorcontrib><creatorcontrib>Aguillon, David</creatorcontrib><creatorcontrib>Carlos Andres Tobon Quintero</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>John Fredy Ochoa Gomez</creatorcontrib><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><title>arXiv.org</title><description>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</description><subject>Alzheimer's disease</subject><subject>Balancing</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Electroencephalography</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Public health</subject><subject>Risk</subject><subject>Sample size</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0FqwzAQAEUhkNDkDws9Gxwpbnx1jdNeekl7N6Jex5tIWlcrB9rX14Q-IKc5zMyDWmljtlm503qpNiLnPM_1814XhVkpX7MfIw4YhK4I75gG7tjx6Qd6jvBh_egQqunkMSSbiANQgKZ5hRdib-MF5yhNHaHchsr9Dkgeo8CR5AK1syLU09ftXatFb53g5p-P6unQfNZv2Rj5e0JJ7ZmnGGbVmq0xpS71zPuqPxZ-SfM</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Veronica Henao Isaza</creator><creator>Aguillon, David</creator><creator>Carlos Andres Tobon Quintero</creator><creator>Lopera, Francisco</creator><creator>John Fredy Ochoa Gomez</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241120</creationdate><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><author>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31338282313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Balancing</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Electroencephalography</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Public health</topic><topic>Risk</topic><topic>Sample size</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Veronica Henao Isaza</creatorcontrib><creatorcontrib>Aguillon, David</creatorcontrib><creatorcontrib>Carlos Andres Tobon Quintero</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>John Fredy Ochoa Gomez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veronica Henao Isaza</au><au>Aguillon, David</au><au>Carlos Andres Tobon Quintero</au><au>Lopera, Francisco</au><au>John Fredy Ochoa Gomez</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</atitle><jtitle>arXiv.org</jtitle><date>2024-11-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3133828231 |
source | Publicly Available Content Database |
subjects | Alzheimer's disease Balancing Biomarkers Classification Data processing Decision trees Electroencephalography Impact analysis Machine learning Public health Risk Sample size Statistical methods |
title | Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comprehensive%20Methodology%20for%20Sample%20Augmentation%20in%20EEG%20Biomarker%20Studies%20for%20Alzheimers%20Risk%20Classification&rft.jtitle=arXiv.org&rft.au=Veronica%20Henao%20Isaza&rft.date=2024-11-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133828231%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31338282313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133828231&rft_id=info:pmid/&rfr_iscdi=true |