Loading…

Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification

Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Veronica Henao Isaza, Aguillon, David, Carlos Andres Tobon Quintero, Lopera, Francisco, John Fredy Ochoa Gomez
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Veronica Henao Isaza
Aguillon, David
Carlos Andres Tobon Quintero
Lopera, Francisco
John Fredy Ochoa Gomez
description Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133828231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133828231</sourcerecordid><originalsourceid>FETCH-proquest_journals_31338282313</originalsourceid><addsrcrecordid>eNqNi0FqwzAQAEUhkNDkDws9Gxwpbnx1jdNeekl7N6Jex5tIWlcrB9rX14Q-IKc5zMyDWmljtlm503qpNiLnPM_1814XhVkpX7MfIw4YhK4I75gG7tjx6Qd6jvBh_egQqunkMSSbiANQgKZ5hRdib-MF5yhNHaHchsr9Dkgeo8CR5AK1syLU09ftXatFb53g5p-P6unQfNZv2Rj5e0JJ7ZmnGGbVmq0xpS71zPuqPxZ-SfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133828231</pqid></control><display><type>article</type><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><source>Publicly Available Content Database</source><creator>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</creator><creatorcontrib>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</creatorcontrib><description>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alzheimer's disease ; Balancing ; Biomarkers ; Classification ; Data processing ; Decision trees ; Electroencephalography ; Impact analysis ; Machine learning ; Public health ; Risk ; Sample size ; Statistical methods</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133828231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Veronica Henao Isaza</creatorcontrib><creatorcontrib>Aguillon, David</creatorcontrib><creatorcontrib>Carlos Andres Tobon Quintero</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>John Fredy Ochoa Gomez</creatorcontrib><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><title>arXiv.org</title><description>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</description><subject>Alzheimer's disease</subject><subject>Balancing</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Electroencephalography</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Public health</subject><subject>Risk</subject><subject>Sample size</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0FqwzAQAEUhkNDkDws9Gxwpbnx1jdNeekl7N6Jex5tIWlcrB9rX14Q-IKc5zMyDWmljtlm503qpNiLnPM_1814XhVkpX7MfIw4YhK4I75gG7tjx6Qd6jvBh_egQqunkMSSbiANQgKZ5hRdib-MF5yhNHaHchsr9Dkgeo8CR5AK1syLU09ftXatFb53g5p-P6unQfNZv2Rj5e0JJ7ZmnGGbVmq0xpS71zPuqPxZ-SfM</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Veronica Henao Isaza</creator><creator>Aguillon, David</creator><creator>Carlos Andres Tobon Quintero</creator><creator>Lopera, Francisco</creator><creator>John Fredy Ochoa Gomez</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241120</creationdate><title>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</title><author>Veronica Henao Isaza ; Aguillon, David ; Carlos Andres Tobon Quintero ; Lopera, Francisco ; John Fredy Ochoa Gomez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31338282313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Balancing</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Electroencephalography</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Public health</topic><topic>Risk</topic><topic>Sample size</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Veronica Henao Isaza</creatorcontrib><creatorcontrib>Aguillon, David</creatorcontrib><creatorcontrib>Carlos Andres Tobon Quintero</creatorcontrib><creatorcontrib>Lopera, Francisco</creatorcontrib><creatorcontrib>John Fredy Ochoa Gomez</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veronica Henao Isaza</au><au>Aguillon, David</au><au>Carlos Andres Tobon Quintero</au><au>Lopera, Francisco</au><au>John Fredy Ochoa Gomez</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification</atitle><jtitle>arXiv.org</jtitle><date>2024-11-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3133828231
source Publicly Available Content Database
subjects Alzheimer's disease
Balancing
Biomarkers
Classification
Data processing
Decision trees
Electroencephalography
Impact analysis
Machine learning
Public health
Risk
Sample size
Statistical methods
title Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comprehensive%20Methodology%20for%20Sample%20Augmentation%20in%20EEG%20Biomarker%20Studies%20for%20Alzheimers%20Risk%20Classification&rft.jtitle=arXiv.org&rft.au=Veronica%20Henao%20Isaza&rft.date=2024-11-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133828231%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31338282313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133828231&rft_id=info:pmid/&rfr_iscdi=true