Loading…
MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 mi...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sinha, Sankalp Khan, Mohammad Sadil Muhammad Usama Shino, Sam Stricker, Didier Sk Aziz Ali Afzal, Muhammad Zeshan |
description | Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3133836690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133836690</sourcerecordid><originalsourceid>FETCH-proquest_journals_31338366903</originalsourceid><addsrcrecordid>eNqNysEKgjAcgPERBEn5DoOOMZj7q1m3MMWDXkKETrJo1mS42mbU2xfRA3T6Dt9vgjwGEJAkZGyGfGt7SimL1yyKwEPHandospKEtFptcTUqJ0kpHkLhRtqRK5wpftKGO6kH3GmDC3m5klyehZLuhWvxdMRpAnuc6sGJweHUiK9eoGnHlRX-r3O0zLM6LcjN6PsorGt7PZrhs1oIABKI4w2F_9QbaMA_5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133836690</pqid></control><display><type>article</type><title>MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation</title><source>Publicly Available Content (ProQuest)</source><creator>Sinha, Sankalp ; Khan, Mohammad Sadil ; Muhammad Usama ; Shino, Sam ; Stricker, Didier ; Sk Aziz Ali ; Afzal, Muhammad Zeshan</creator><creatorcontrib>Sinha, Sankalp ; Khan, Mohammad Sadil ; Muhammad Usama ; Shino, Sam ; Stricker, Didier ; Sk Aziz Ali ; Afzal, Muhammad Zeshan</creatorcontrib><description>Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Computer vision ; Datasets ; Diffusion rate ; Image reconstruction ; Rapid prototyping ; Words (language)</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3133836690?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Sinha, Sankalp</creatorcontrib><creatorcontrib>Khan, Mohammad Sadil</creatorcontrib><creatorcontrib>Muhammad Usama</creatorcontrib><creatorcontrib>Shino, Sam</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><creatorcontrib>Sk Aziz Ali</creatorcontrib><creatorcontrib>Afzal, Muhammad Zeshan</creatorcontrib><title>MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation</title><title>arXiv.org</title><description>Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.</description><subject>Annotations</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Diffusion rate</subject><subject>Image reconstruction</subject><subject>Rapid prototyping</subject><subject>Words (language)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgjAcgPERBEn5DoOOMZj7q1m3MMWDXkKETrJo1mS42mbU2xfRA3T6Dt9vgjwGEJAkZGyGfGt7SimL1yyKwEPHandospKEtFptcTUqJ0kpHkLhRtqRK5wpftKGO6kH3GmDC3m5klyehZLuhWvxdMRpAnuc6sGJweHUiK9eoGnHlRX-r3O0zLM6LcjN6PsorGt7PZrhs1oIABKI4w2F_9QbaMA_5w</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Sinha, Sankalp</creator><creator>Khan, Mohammad Sadil</creator><creator>Muhammad Usama</creator><creator>Shino, Sam</creator><creator>Stricker, Didier</creator><creator>Sk Aziz Ali</creator><creator>Afzal, Muhammad Zeshan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241126</creationdate><title>MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation</title><author>Sinha, Sankalp ; Khan, Mohammad Sadil ; Muhammad Usama ; Shino, Sam ; Stricker, Didier ; Sk Aziz Ali ; Afzal, Muhammad Zeshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31338366903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Diffusion rate</topic><topic>Image reconstruction</topic><topic>Rapid prototyping</topic><topic>Words (language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Sankalp</creatorcontrib><creatorcontrib>Khan, Mohammad Sadil</creatorcontrib><creatorcontrib>Muhammad Usama</creatorcontrib><creatorcontrib>Shino, Sam</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><creatorcontrib>Sk Aziz Ali</creatorcontrib><creatorcontrib>Afzal, Muhammad Zeshan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Sankalp</au><au>Khan, Mohammad Sadil</au><au>Muhammad Usama</au><au>Shino, Sam</au><au>Stricker, Didier</au><au>Sk Aziz Ali</au><au>Afzal, Muhammad Zeshan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation</atitle><jtitle>arXiv.org</jtitle><date>2024-11-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3133836690 |
source | Publicly Available Content (ProQuest) |
subjects | Annotations Computer vision Datasets Diffusion rate Image reconstruction Rapid prototyping Words (language) |
title | MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MARVEL-40M+:%20Multi-Level%20Visual%20Elaboration%20for%20High-Fidelity%20Text-to-3D%20Content%20Creation&rft.jtitle=arXiv.org&rft.au=Sinha,%20Sankalp&rft.date=2024-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3133836690%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31338366903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133836690&rft_id=info:pmid/&rfr_iscdi=true |