Loading…

Impact of blockage ratio on the stability of premixed n-butane-air swirl flames

This study explores the impact of blockage ratio on the stability of swirl (axial swirl generator with S1.5) stabilized turbulent premixed n-butane/air flames at 1 bar, 300 K, and ϕ = 1.4 and ϕ = 0.8. Particle image velocimetry experiments and delayed detached eddy simulation simulations are employe...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-12, Vol.36 (12)
Main Authors: Raj, Vishnu, Prathap, Chockalingam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores the impact of blockage ratio on the stability of swirl (axial swirl generator with S1.5) stabilized turbulent premixed n-butane/air flames at 1 bar, 300 K, and ϕ = 1.4 and ϕ = 0.8. Particle image velocimetry experiments and delayed detached eddy simulation simulations are employed to reveal the underlying mechanisms. Increasing the blockage ratio leads to (1) a single broader central recirculation zone (CRZ) to an elongated CRZ with a recirculation zone behind the bluff body and (2) higher turbulence and strain levels generated an intense and narrow flame (jet spread rate = 22°–15°). An adverse effect of enhanced strain rate with an increasing blockage ratio narrowed the measured lean blowoff limits ( ϕ = 0.78–0.86). For a higher blockage ratio, the local equivalence ratio ( ϕlocal) to the reaction side decreased due to (1) air entrainment and (2) diffusion of deficient species O2 toward the reaction zone. The entrainment of ambient air into the flame was quantified by estimating root mean square local equivalence ratio ( ϕrms) from predictions, which showed a 12.1% increase at the outer shear layer of the burner having the highest blockage ratio. Furthermore, the Lewis number effect on a low blockage ratio burner revealed preferential diffusion of product species H2O ahead of CO2 toward the preheat zone for Le 
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0232415