Loading…
Copula-Based Non-Metric Unfolding on Augmented Data Matrix
A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association mea...
Saved in:
Published in: | Journal of classification 2024, Vol.41 (3), p.678-697 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures. |
---|---|
ISSN: | 0176-4268 1432-1343 |
DOI: | 10.1007/s00357-024-09495-x |