Loading…

Mathematical Model of Ideal Free Distribution in the Predator–Prey System

We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.285 (3), p.328-338
Main Authors: Zelenchuk, P. A., Tsybulin, V. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3
container_end_page 338
container_issue 3
container_start_page 328
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 285
creator Zelenchuk, P. A.
Tsybulin, V. G.
description We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.
doi_str_mv 10.1007/s10958-024-07445-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140456508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140456508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMkklmKfWv2KKgrkOa3NEp7UxNUmh3voNv6JOYOoI7V_dc7jnnwofQKaPnjFJ1ERmtpCa0EIQqISTZ7KEBk4oTrSq5nzVVBeFciUN0FOOc5lCp-QDdT216g6VNjbMLPO08LHBX47GHvN4EAHzVxBSa2To1XYubFmc7fgzgberC18dnllv8tI0JlsfooLaLCCe_c4hebq6fR3dk8nA7Hl1OiGNMbggD52pdl1JK51wJUhRacOd4BeAruTvMFLNWaa2Eop5V3AtvnWa8rkoOfIjO-t5V6N7XEJOZd-vQ5peGM0GFLCXV2VX0Lhe6GAPUZhWapQ1bw6jZQTM9NJOhmR9oZpNDvA_FbG5fIfxV_5P6BoydcKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140456508</pqid></control><display><type>article</type><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><source>Springer Nature</source><creator>Zelenchuk, P. A. ; Tsybulin, V. G.</creator><creatorcontrib>Zelenchuk, P. A. ; Tsybulin, V. G.</creatorcontrib><description>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07445-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Advection-diffusion equation ; Asymptotic series ; Dimensional analysis ; Mathematics ; Mathematics and Statistics ; Predators ; Spatial distribution</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.285 (3), p.328-338</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zelenchuk, P. A.</creatorcontrib><creatorcontrib>Tsybulin, V. G.</creatorcontrib><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</description><subject>Advection-diffusion equation</subject><subject>Asymptotic series</subject><subject>Dimensional analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Predators</subject><subject>Spatial distribution</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMkklmKfWv2KKgrkOa3NEp7UxNUmh3voNv6JOYOoI7V_dc7jnnwofQKaPnjFJ1ERmtpCa0EIQqISTZ7KEBk4oTrSq5nzVVBeFciUN0FOOc5lCp-QDdT216g6VNjbMLPO08LHBX47GHvN4EAHzVxBSa2To1XYubFmc7fgzgberC18dnllv8tI0JlsfooLaLCCe_c4hebq6fR3dk8nA7Hl1OiGNMbggD52pdl1JK51wJUhRacOd4BeAruTvMFLNWaa2Eop5V3AtvnWa8rkoOfIjO-t5V6N7XEJOZd-vQ5peGM0GFLCXV2VX0Lhe6GAPUZhWapQ1bw6jZQTM9NJOhmR9oZpNDvA_FbG5fIfxV_5P6BoydcKk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zelenchuk, P. A.</creator><creator>Tsybulin, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><author>Zelenchuk, P. A. ; Tsybulin, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection-diffusion equation</topic><topic>Asymptotic series</topic><topic>Dimensional analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Predators</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelenchuk, P. A.</creatorcontrib><creatorcontrib>Tsybulin, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zelenchuk, P. A.</au><au>Tsybulin, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>285</volume><issue>3</issue><spage>328</spage><epage>338</epage><pages>328-338</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07445-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2024, Vol.285 (3), p.328-338
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_3140456508
source Springer Nature
subjects Advection-diffusion equation
Asymptotic series
Dimensional analysis
Mathematics
Mathematics and Statistics
Predators
Spatial distribution
title Mathematical Model of Ideal Free Distribution in the Predator–Prey System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20of%20Ideal%20Free%20Distribution%20in%20the%20Predator%E2%80%93Prey%20System&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Zelenchuk,%20P.%20A.&rft.date=2024&rft.volume=285&rft.issue=3&rft.spage=328&rft.epage=338&rft.pages=328-338&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07445-x&rft_dat=%3Cproquest_cross%3E3140456508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140456508&rft_id=info:pmid/&rfr_iscdi=true