Loading…
Mathematical Model of Ideal Free Distribution in the Predator–Prey System
We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.285 (3), p.328-338 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3 |
container_end_page | 338 |
container_issue | 3 |
container_start_page | 328 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 285 |
creator | Zelenchuk, P. A. Tsybulin, V. G. |
description | We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions. |
doi_str_mv | 10.1007/s10958-024-07445-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140456508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140456508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMkklmKfWv2KKgrkOa3NEp7UxNUmh3voNv6JOYOoI7V_dc7jnnwofQKaPnjFJ1ERmtpCa0EIQqISTZ7KEBk4oTrSq5nzVVBeFciUN0FOOc5lCp-QDdT216g6VNjbMLPO08LHBX47GHvN4EAHzVxBSa2To1XYubFmc7fgzgberC18dnllv8tI0JlsfooLaLCCe_c4hebq6fR3dk8nA7Hl1OiGNMbggD52pdl1JK51wJUhRacOd4BeAruTvMFLNWaa2Eop5V3AtvnWa8rkoOfIjO-t5V6N7XEJOZd-vQ5peGM0GFLCXV2VX0Lhe6GAPUZhWapQ1bw6jZQTM9NJOhmR9oZpNDvA_FbG5fIfxV_5P6BoydcKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140456508</pqid></control><display><type>article</type><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><source>Springer Nature</source><creator>Zelenchuk, P. A. ; Tsybulin, V. G.</creator><creatorcontrib>Zelenchuk, P. A. ; Tsybulin, V. G.</creatorcontrib><description>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07445-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Advection-diffusion equation ; Asymptotic series ; Dimensional analysis ; Mathematics ; Mathematics and Statistics ; Predators ; Spatial distribution</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.285 (3), p.328-338</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zelenchuk, P. A.</creatorcontrib><creatorcontrib>Tsybulin, V. G.</creatorcontrib><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</description><subject>Advection-diffusion equation</subject><subject>Asymptotic series</subject><subject>Dimensional analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Predators</subject><subject>Spatial distribution</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOppMkklmKfWv2KKgrkOa3NEp7UxNUmh3voNv6JOYOoI7V_dc7jnnwofQKaPnjFJ1ERmtpCa0EIQqISTZ7KEBk4oTrSq5nzVVBeFciUN0FOOc5lCp-QDdT216g6VNjbMLPO08LHBX47GHvN4EAHzVxBSa2To1XYubFmc7fgzgberC18dnllv8tI0JlsfooLaLCCe_c4hebq6fR3dk8nA7Hl1OiGNMbggD52pdl1JK51wJUhRacOd4BeAruTvMFLNWaa2Eop5V3AtvnWa8rkoOfIjO-t5V6N7XEJOZd-vQ5peGM0GFLCXV2VX0Lhe6GAPUZhWapQ1bw6jZQTM9NJOhmR9oZpNDvA_FbG5fIfxV_5P6BoydcKk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zelenchuk, P. A.</creator><creator>Tsybulin, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</title><author>Zelenchuk, P. A. ; Tsybulin, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection-diffusion equation</topic><topic>Asymptotic series</topic><topic>Dimensional analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Predators</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zelenchuk, P. A.</creatorcontrib><creatorcontrib>Tsybulin, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zelenchuk, P. A.</au><au>Tsybulin, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model of Ideal Free Distribution in the Predator–Prey System</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>285</volume><issue>3</issue><spage>328</spage><epage>338</epage><pages>328-338</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a system of reaction-diffusion-advection equations that describes the evolution of spatial distributions of antagonistic populations under directed migration. The concept of an ideal free distribution (IFD) for a predator-prey system is introduced. We find conditions on parameters under which there exist explicit stationary solutions with nonzero densities of both species. The numerical approach with staggered grids is used to analyze solutions in case of violation of the conditions on the coefficients that provide the IFD. We construct asymptotic expansions for an inhomogeneous one-dimensional area and present the results of a computational experiment in the case of violation of the IFD conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07445-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2024, Vol.285 (3), p.328-338 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_3140456508 |
source | Springer Nature |
subjects | Advection-diffusion equation Asymptotic series Dimensional analysis Mathematics Mathematics and Statistics Predators Spatial distribution |
title | Mathematical Model of Ideal Free Distribution in the Predator–Prey System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20of%20Ideal%20Free%20Distribution%20in%20the%20Predator%E2%80%93Prey%20System&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Zelenchuk,%20P.%20A.&rft.date=2024&rft.volume=285&rft.issue=3&rft.spage=328&rft.epage=338&rft.pages=328-338&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07445-x&rft_dat=%3Cproquest_cross%3E3140456508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c115x-1eccf8f6555ccc6e542843cc39eed95f655b71aa7887470d193d4dac813f963e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140456508&rft_id=info:pmid/&rfr_iscdi=true |