Loading…

From Kähler Ricci solitons to Calabi-Yau Kähler cones

We show that if \(X\) is a smooth Fano manifold which caries a K\"ahler Ricci soliton, then the canonical cone of the product of \(X\) with a complex projective space of sufficiently large dimension is a Calabi--Yau cone. This can be seen as an asymptotic version of a conjecture by Mabuchi and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Apostolov, Vestislav, Lahdili, Abdellah, Legendre, Eveline
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Apostolov, Vestislav
Lahdili, Abdellah
Legendre, Eveline
description We show that if \(X\) is a smooth Fano manifold which caries a K\"ahler Ricci soliton, then the canonical cone of the product of \(X\) with a complex projective space of sufficiently large dimension is a Calabi--Yau cone. This can be seen as an asymptotic version of a conjecture by Mabuchi and Nikagawa. This result is obtained by the openness of the set of weight functions \(v\) over the momentum polytope of a given smooth Fano manifold, for which a \(v\)-soliton exists. We discuss other ramifications of this approach, including a Licherowicz type obstruction to the existence of a K\"ahler Ricci soliton and a Fujita type volume bound for the existence of a \(v\)-soliton.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3140662055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140662055</sourcerecordid><originalsourceid>FETCH-proquest_journals_31406620553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdyvKz1XwPrwkIye1SCEoMzk5U6E4PyezJD-vWKEkX8E5MScxKVM3MrEUrig5Py-1mIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0NTQzMzIwMgPYRpwoARCM2Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140662055</pqid></control><display><type>article</type><title>From Kähler Ricci solitons to Calabi-Yau Kähler cones</title><source>ProQuest - Publicly Available Content Database</source><creator>Apostolov, Vestislav ; Lahdili, Abdellah ; Legendre, Eveline</creator><creatorcontrib>Apostolov, Vestislav ; Lahdili, Abdellah ; Legendre, Eveline</creatorcontrib><description>We show that if \(X\) is a smooth Fano manifold which caries a K\"ahler Ricci soliton, then the canonical cone of the product of \(X\) with a complex projective space of sufficiently large dimension is a Calabi--Yau cone. This can be seen as an asymptotic version of a conjecture by Mabuchi and Nikagawa. This result is obtained by the openness of the set of weight functions \(v\) over the momentum polytope of a given smooth Fano manifold, for which a \(v\)-soliton exists. We discuss other ramifications of this approach, including a Licherowicz type obstruction to the existence of a K\"ahler Ricci soliton and a Fujita type volume bound for the existence of a \(v\)-soliton.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Solitary waves ; Weighting functions</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3140662055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Apostolov, Vestislav</creatorcontrib><creatorcontrib>Lahdili, Abdellah</creatorcontrib><creatorcontrib>Legendre, Eveline</creatorcontrib><title>From Kähler Ricci solitons to Calabi-Yau Kähler cones</title><title>arXiv.org</title><description>We show that if \(X\) is a smooth Fano manifold which caries a K\"ahler Ricci soliton, then the canonical cone of the product of \(X\) with a complex projective space of sufficiently large dimension is a Calabi--Yau cone. This can be seen as an asymptotic version of a conjecture by Mabuchi and Nikagawa. This result is obtained by the openness of the set of weight functions \(v\) over the momentum polytope of a given smooth Fano manifold, for which a \(v\)-soliton exists. We discuss other ramifications of this approach, including a Licherowicz type obstruction to the existence of a K\"ahler Ricci soliton and a Fujita type volume bound for the existence of a \(v\)-soliton.</description><subject>Solitary waves</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdyvKz1XwPrwkIye1SCEoMzk5U6E4PyezJD-vWKEkX8E5MScxKVM3MrEUrig5Py-1mIeBNS0xpziVF0pzMyi7uYY4e-gWFOUXlqYWl8Rn5ZcW5QGl4o0NTQzMzIwMgPYRpwoARCM2Ig</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Apostolov, Vestislav</creator><creator>Lahdili, Abdellah</creator><creator>Legendre, Eveline</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241203</creationdate><title>From Kähler Ricci solitons to Calabi-Yau Kähler cones</title><author>Apostolov, Vestislav ; Lahdili, Abdellah ; Legendre, Eveline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31406620553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Solitary waves</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Apostolov, Vestislav</creatorcontrib><creatorcontrib>Lahdili, Abdellah</creatorcontrib><creatorcontrib>Legendre, Eveline</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apostolov, Vestislav</au><au>Lahdili, Abdellah</au><au>Legendre, Eveline</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>From Kähler Ricci solitons to Calabi-Yau Kähler cones</atitle><jtitle>arXiv.org</jtitle><date>2024-12-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show that if \(X\) is a smooth Fano manifold which caries a K\"ahler Ricci soliton, then the canonical cone of the product of \(X\) with a complex projective space of sufficiently large dimension is a Calabi--Yau cone. This can be seen as an asymptotic version of a conjecture by Mabuchi and Nikagawa. This result is obtained by the openness of the set of weight functions \(v\) over the momentum polytope of a given smooth Fano manifold, for which a \(v\)-soliton exists. We discuss other ramifications of this approach, including a Licherowicz type obstruction to the existence of a K\"ahler Ricci soliton and a Fujita type volume bound for the existence of a \(v\)-soliton.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3140662055
source ProQuest - Publicly Available Content Database
subjects Solitary waves
Weighting functions
title From Kähler Ricci solitons to Calabi-Yau Kähler cones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=From%20K%C3%A4hler%20Ricci%20solitons%20to%20Calabi-Yau%20K%C3%A4hler%20cones&rft.jtitle=arXiv.org&rft.au=Apostolov,%20Vestislav&rft.date=2024-12-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3140662055%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31406620553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140662055&rft_id=info:pmid/&rfr_iscdi=true