Loading…

Implementation of extended kalman filter for localization of ambulance robot

This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arre...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent robotics and applications Online 2024-12, Vol.8 (4), p.960-973
Main Authors: Yang, Chan-Yun, Samani, Hooman, Tang, Zirong, Li, Chunxu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-44bfba6d6403edb5ccbea1235eb45cb8e006254430bcfd079a6165c440428f6e3
container_end_page 973
container_issue 4
container_start_page 960
container_title International journal of intelligent robotics and applications Online
container_volume 8
creator Yang, Chan-Yun
Samani, Hooman
Tang, Zirong
Li, Chunxu
description This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.
doi_str_mv 10.1007/s41315-024-00352-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3140861744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140861744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-44bfba6d6403edb5ccbea1235eb45cb8e006254430bcfd079a6165c440428f6e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOIzzB1wVXFdfkpe0s5TBj4EBNwruQpK-SMe2GdMO6Px6qxXduXp3cc99cBg753DJAYqrHrnkKgeBOYBUIj8csZmQWudqWT4f_-aCn7JF328BQABqjXrGNut211BL3WCHOnZZDBm9D9RVVGWvtmltl4W6GShlIaasid429eG3alu3b2znKUvRxeGMnQTb9LT4uXP2dHvzuLrPNw9369X1JvcCccgRXXBWVxpBUuWU944sF1KRQ-VdSQBaKEQJzocKiqXVXCuPCCjKoEnO2cW0u0vxbU_9YLZxn7rxpZEcodS8GOk5E1PLp9j3iYLZpbq16cNwMF_izCTOjOLMtzhzGCE5Qf1Y7l4o_U3_Q30CWy9xpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140861744</pqid></control><display><type>article</type><title>Implementation of extended kalman filter for localization of ambulance robot</title><source>Springer Nature</source><creator>Yang, Chan-Yun ; Samani, Hooman ; Tang, Zirong ; Li, Chunxu</creator><creatorcontrib>Yang, Chan-Yun ; Samani, Hooman ; Tang, Zirong ; Li, Chunxu</creatorcontrib><description>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</description><identifier>ISSN: 2366-5971</identifier><identifier>EISSN: 2366-598X</identifier><identifier>DOI: 10.1007/s41315-024-00352-z</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Algorithms ; Ambulances ; Artificial Intelligence ; Cardiac arrest ; Computer Science ; Control ; Electronics and Microelectronics ; Extended Kalman filter ; Global positioning systems ; GPS ; Indoor environments ; Inertial coordinates ; Inertial platforms ; Instrumentation ; Localization ; Machines ; Manufacturing ; Mechatronics ; Patients ; Position measurement ; Processes ; Regular Paper ; Robotics ; Robots ; Sensors ; User Interfaces and Human Computer Interaction</subject><ispartof>International journal of intelligent robotics and applications Online, 2024-12, Vol.8 (4), p.960-973</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-44bfba6d6403edb5ccbea1235eb45cb8e006254430bcfd079a6165c440428f6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chan-Yun</creatorcontrib><creatorcontrib>Samani, Hooman</creatorcontrib><creatorcontrib>Tang, Zirong</creatorcontrib><creatorcontrib>Li, Chunxu</creatorcontrib><title>Implementation of extended kalman filter for localization of ambulance robot</title><title>International journal of intelligent robotics and applications Online</title><addtitle>Int J Intell Robot Appl</addtitle><description>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</description><subject>Algorithms</subject><subject>Ambulances</subject><subject>Artificial Intelligence</subject><subject>Cardiac arrest</subject><subject>Computer Science</subject><subject>Control</subject><subject>Electronics and Microelectronics</subject><subject>Extended Kalman filter</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Indoor environments</subject><subject>Inertial coordinates</subject><subject>Inertial platforms</subject><subject>Instrumentation</subject><subject>Localization</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Patients</subject><subject>Position measurement</subject><subject>Processes</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2366-5971</issn><issn>2366-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOIzzB1wVXFdfkpe0s5TBj4EBNwruQpK-SMe2GdMO6Px6qxXduXp3cc99cBg753DJAYqrHrnkKgeBOYBUIj8csZmQWudqWT4f_-aCn7JF328BQABqjXrGNut211BL3WCHOnZZDBm9D9RVVGWvtmltl4W6GShlIaasid429eG3alu3b2znKUvRxeGMnQTb9LT4uXP2dHvzuLrPNw9369X1JvcCccgRXXBWVxpBUuWU944sF1KRQ-VdSQBaKEQJzocKiqXVXCuPCCjKoEnO2cW0u0vxbU_9YLZxn7rxpZEcodS8GOk5E1PLp9j3iYLZpbq16cNwMF_izCTOjOLMtzhzGCE5Qf1Y7l4o_U3_Q30CWy9xpQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yang, Chan-Yun</creator><creator>Samani, Hooman</creator><creator>Tang, Zirong</creator><creator>Li, Chunxu</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241201</creationdate><title>Implementation of extended kalman filter for localization of ambulance robot</title><author>Yang, Chan-Yun ; Samani, Hooman ; Tang, Zirong ; Li, Chunxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-44bfba6d6403edb5ccbea1235eb45cb8e006254430bcfd079a6165c440428f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ambulances</topic><topic>Artificial Intelligence</topic><topic>Cardiac arrest</topic><topic>Computer Science</topic><topic>Control</topic><topic>Electronics and Microelectronics</topic><topic>Extended Kalman filter</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Indoor environments</topic><topic>Inertial coordinates</topic><topic>Inertial platforms</topic><topic>Instrumentation</topic><topic>Localization</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Patients</topic><topic>Position measurement</topic><topic>Processes</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chan-Yun</creatorcontrib><creatorcontrib>Samani, Hooman</creatorcontrib><creatorcontrib>Tang, Zirong</creatorcontrib><creatorcontrib>Li, Chunxu</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of intelligent robotics and applications Online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chan-Yun</au><au>Samani, Hooman</au><au>Tang, Zirong</au><au>Li, Chunxu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of extended kalman filter for localization of ambulance robot</atitle><jtitle>International journal of intelligent robotics and applications Online</jtitle><stitle>Int J Intell Robot Appl</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>960</spage><epage>973</epage><pages>960-973</pages><issn>2366-5971</issn><eissn>2366-598X</eissn><abstract>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41315-024-00352-z</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-5971
ispartof International journal of intelligent robotics and applications Online, 2024-12, Vol.8 (4), p.960-973
issn 2366-5971
2366-598X
language eng
recordid cdi_proquest_journals_3140861744
source Springer Nature
subjects Algorithms
Ambulances
Artificial Intelligence
Cardiac arrest
Computer Science
Control
Electronics and Microelectronics
Extended Kalman filter
Global positioning systems
GPS
Indoor environments
Inertial coordinates
Inertial platforms
Instrumentation
Localization
Machines
Manufacturing
Mechatronics
Patients
Position measurement
Processes
Regular Paper
Robotics
Robots
Sensors
User Interfaces and Human Computer Interaction
title Implementation of extended kalman filter for localization of ambulance robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20extended%20kalman%20filter%20for%20localization%20of%20ambulance%20robot&rft.jtitle=International%20journal%20of%20intelligent%20robotics%20and%20applications%20Online&rft.au=Yang,%20Chan-Yun&rft.date=2024-12-01&rft.volume=8&rft.issue=4&rft.spage=960&rft.epage=973&rft.pages=960-973&rft.issn=2366-5971&rft.eissn=2366-598X&rft_id=info:doi/10.1007/s41315-024-00352-z&rft_dat=%3Cproquest_cross%3E3140861744%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-44bfba6d6403edb5ccbea1235eb45cb8e006254430bcfd079a6165c440428f6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3140861744&rft_id=info:pmid/&rfr_iscdi=true