Loading…
4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion
We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream archit...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Chaoyang Zhuang, Peiye Ngo, Tuan Duc Menapace, Willi Siarohin, Aliaksandr Vasilkovsky, Michael Skorokhodov, Ivan Tulyakov, Sergey Wonka, Peter Hsin-Ying, Lee |
description | We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141681261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141681261</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416812613</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_EHAONI_G4mqtDg4i0rVEvdVbQqJJu_j1PvADnM5wzhmRREjJWaGEmJA0xi7LMqEXIs9lQip1AGNZjRfwS7oDExy6K92Ag2AsPs3JAt3ffO_ZJ8TY45mqkn4HWmLbDhG9m5Fxa2yE9McpmVfr42rL7sE_Boh90_khuLdqJFdcF1xoLv-rXjM8OjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141681261</pqid></control><display><type>article</type><title>4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Wang, Chaoyang ; Zhuang, Peiye ; Ngo, Tuan Duc ; Menapace, Willi ; Siarohin, Aliaksandr ; Vasilkovsky, Michael ; Skorokhodov, Ivan ; Tulyakov, Sergey ; Wonka, Peter ; Hsin-Ying, Lee</creator><creatorcontrib>Wang, Chaoyang ; Zhuang, Peiye ; Ngo, Tuan Duc ; Menapace, Willi ; Siarohin, Aliaksandr ; Vasilkovsky, Michael ; Skorokhodov, Ivan ; Tulyakov, Sergey ; Wonka, Peter ; Hsin-Ying, Lee</creatorcontrib><description>We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion layers ; Diffusion rate ; Frames (data processing) ; Synchronism</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3141681261?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Ngo, Tuan Duc</creatorcontrib><creatorcontrib>Menapace, Willi</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Vasilkovsky, Michael</creatorcontrib><creatorcontrib>Skorokhodov, Ivan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Wonka, Peter</creatorcontrib><creatorcontrib>Hsin-Ying, Lee</creatorcontrib><title>4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion</title><title>arXiv.org</title><description>We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).</description><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Frames (data processing)</subject><subject>Synchronism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_EHAONI_G4mqtDg4i0rVEvdVbQqJJu_j1PvADnM5wzhmRREjJWaGEmJA0xi7LMqEXIs9lQip1AGNZjRfwS7oDExy6K92Ag2AsPs3JAt3ffO_ZJ8TY45mqkn4HWmLbDhG9m5Fxa2yE9McpmVfr42rL7sE_Boh90_khuLdqJFdcF1xoLv-rXjM8OjU</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Wang, Chaoyang</creator><creator>Zhuang, Peiye</creator><creator>Ngo, Tuan Duc</creator><creator>Menapace, Willi</creator><creator>Siarohin, Aliaksandr</creator><creator>Vasilkovsky, Michael</creator><creator>Skorokhodov, Ivan</creator><creator>Tulyakov, Sergey</creator><creator>Wonka, Peter</creator><creator>Hsin-Ying, Lee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion</title><author>Wang, Chaoyang ; Zhuang, Peiye ; Ngo, Tuan Duc ; Menapace, Willi ; Siarohin, Aliaksandr ; Vasilkovsky, Michael ; Skorokhodov, Ivan ; Tulyakov, Sergey ; Wonka, Peter ; Hsin-Ying, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416812613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Frames (data processing)</topic><topic>Synchronism</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chaoyang</creatorcontrib><creatorcontrib>Zhuang, Peiye</creatorcontrib><creatorcontrib>Ngo, Tuan Duc</creatorcontrib><creatorcontrib>Menapace, Willi</creatorcontrib><creatorcontrib>Siarohin, Aliaksandr</creatorcontrib><creatorcontrib>Vasilkovsky, Michael</creatorcontrib><creatorcontrib>Skorokhodov, Ivan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Wonka, Peter</creatorcontrib><creatorcontrib>Hsin-Ying, Lee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chaoyang</au><au>Zhuang, Peiye</au><au>Ngo, Tuan Duc</au><au>Menapace, Willi</au><au>Siarohin, Aliaksandr</au><au>Vasilkovsky, Michael</au><au>Skorokhodov, Ivan</au><au>Tulyakov, Sergey</au><au>Wonka, Peter</au><au>Hsin-Ying, Lee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141681261 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Diffusion layers Diffusion rate Frames (data processing) Synchronism |
title | 4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=4Real-Video:%20Learning%20Generalizable%20Photo-Realistic%204D%20Video%20Diffusion&rft.jtitle=arXiv.org&rft.au=Wang,%20Chaoyang&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141681261%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31416812613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141681261&rft_id=info:pmid/&rfr_iscdi=true |