Loading…
AIpparel: A Large Multimodal Generative Model for Digital Garments
Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a large m...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nakayama, Kiyohiro Ackermann, Jan Timur Levent Kesdogan Yang, Zheng Korosteleva, Maria Sorkine-Hornung, Olga Guibas, Leonidas J Yang, Guandao Wetzstein, Gordon |
description | Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a large multimodal model for generating and editing sewing patterns. Our model fine-tunes state-of-the-art large multimodal models (LMMs) on a custom-curated large-scale dataset of over 120,000 unique garments, each with multimodal annotations including text, images, and sewing patterns. Additionally, we propose a novel tokenization scheme that concisely encodes these complex sewing patterns so that LLMs can learn to predict them efficiently. AIpparel achieves state-of-the-art performance in single-modal tasks, including text-to-garment and image-to-garment prediction, and enables novel multimodal garment generation applications such as interactive garment editing. The project website is at georgenakayama.github.io/AIpparel/. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141682355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141682355</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416823553</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcvQsKEgsSs2xUnBU8EksSk9V8C3NKcnMzU9JzFFwT81LLUosySwDiuanpOYopOUXKbhkpmeWgCQTi3JT80qKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjQxNDMwsgYaDVxqgA4LTjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141682355</pqid></control><display><type>article</type><title>AIpparel: A Large Multimodal Generative Model for Digital Garments</title><source>Publicly Available Content Database</source><creator>Nakayama, Kiyohiro ; Ackermann, Jan ; Timur Levent Kesdogan ; Yang, Zheng ; Korosteleva, Maria ; Sorkine-Hornung, Olga ; Guibas, Leonidas J ; Yang, Guandao ; Wetzstein, Gordon</creator><creatorcontrib>Nakayama, Kiyohiro ; Ackermann, Jan ; Timur Levent Kesdogan ; Yang, Zheng ; Korosteleva, Maria ; Sorkine-Hornung, Olga ; Guibas, Leonidas J ; Yang, Guandao ; Wetzstein, Gordon</creatorcontrib><description>Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a large multimodal model for generating and editing sewing patterns. Our model fine-tunes state-of-the-art large multimodal models (LMMs) on a custom-curated large-scale dataset of over 120,000 unique garments, each with multimodal annotations including text, images, and sewing patterns. Additionally, we propose a novel tokenization scheme that concisely encodes these complex sewing patterns so that LLMs can learn to predict them efficiently. AIpparel achieves state-of-the-art performance in single-modal tasks, including text-to-garment and image-to-garment prediction, and enables novel multimodal garment generation applications such as interactive garment editing. The project website is at georgenakayama.github.io/AIpparel/.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Editing ; Garments ; Sewing ; Task complexity</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3141682355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Nakayama, Kiyohiro</creatorcontrib><creatorcontrib>Ackermann, Jan</creatorcontrib><creatorcontrib>Timur Levent Kesdogan</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Korosteleva, Maria</creatorcontrib><creatorcontrib>Sorkine-Hornung, Olga</creatorcontrib><creatorcontrib>Guibas, Leonidas J</creatorcontrib><creatorcontrib>Yang, Guandao</creatorcontrib><creatorcontrib>Wetzstein, Gordon</creatorcontrib><title>AIpparel: A Large Multimodal Generative Model for Digital Garments</title><title>arXiv.org</title><description>Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a large multimodal model for generating and editing sewing patterns. Our model fine-tunes state-of-the-art large multimodal models (LMMs) on a custom-curated large-scale dataset of over 120,000 unique garments, each with multimodal annotations including text, images, and sewing patterns. Additionally, we propose a novel tokenization scheme that concisely encodes these complex sewing patterns so that LLMs can learn to predict them efficiently. AIpparel achieves state-of-the-art performance in single-modal tasks, including text-to-garment and image-to-garment prediction, and enables novel multimodal garment generation applications such as interactive garment editing. The project website is at georgenakayama.github.io/AIpparel/.</description><subject>Annotations</subject><subject>Editing</subject><subject>Garments</subject><subject>Sewing</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcvQsKEgsSs2xUnBU8EksSk9V8C3NKcnMzU9JzFFwT81LLUosySwDiuanpOYopOUXKbhkpmeWgCQTi3JT80qKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3tjQxNDMwsgYaDVxqgA4LTjg</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Nakayama, Kiyohiro</creator><creator>Ackermann, Jan</creator><creator>Timur Levent Kesdogan</creator><creator>Yang, Zheng</creator><creator>Korosteleva, Maria</creator><creator>Sorkine-Hornung, Olga</creator><creator>Guibas, Leonidas J</creator><creator>Yang, Guandao</creator><creator>Wetzstein, Gordon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241216</creationdate><title>AIpparel: A Large Multimodal Generative Model for Digital Garments</title><author>Nakayama, Kiyohiro ; Ackermann, Jan ; Timur Levent Kesdogan ; Yang, Zheng ; Korosteleva, Maria ; Sorkine-Hornung, Olga ; Guibas, Leonidas J ; Yang, Guandao ; Wetzstein, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416823553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Editing</topic><topic>Garments</topic><topic>Sewing</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Kiyohiro</creatorcontrib><creatorcontrib>Ackermann, Jan</creatorcontrib><creatorcontrib>Timur Levent Kesdogan</creatorcontrib><creatorcontrib>Yang, Zheng</creatorcontrib><creatorcontrib>Korosteleva, Maria</creatorcontrib><creatorcontrib>Sorkine-Hornung, Olga</creatorcontrib><creatorcontrib>Guibas, Leonidas J</creatorcontrib><creatorcontrib>Yang, Guandao</creatorcontrib><creatorcontrib>Wetzstein, Gordon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Kiyohiro</au><au>Ackermann, Jan</au><au>Timur Levent Kesdogan</au><au>Yang, Zheng</au><au>Korosteleva, Maria</au><au>Sorkine-Hornung, Olga</au><au>Guibas, Leonidas J</au><au>Yang, Guandao</au><au>Wetzstein, Gordon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AIpparel: A Large Multimodal Generative Model for Digital Garments</atitle><jtitle>arXiv.org</jtitle><date>2024-12-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Apparel is essential to human life, offering protection, mirroring cultural identities, and showcasing personal style. Yet, the creation of garments remains a time-consuming process, largely due to the manual work involved in designing them. To simplify this process, we introduce AIpparel, a large multimodal model for generating and editing sewing patterns. Our model fine-tunes state-of-the-art large multimodal models (LMMs) on a custom-curated large-scale dataset of over 120,000 unique garments, each with multimodal annotations including text, images, and sewing patterns. Additionally, we propose a novel tokenization scheme that concisely encodes these complex sewing patterns so that LLMs can learn to predict them efficiently. AIpparel achieves state-of-the-art performance in single-modal tasks, including text-to-garment and image-to-garment prediction, and enables novel multimodal garment generation applications such as interactive garment editing. The project website is at georgenakayama.github.io/AIpparel/.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141682355 |
source | Publicly Available Content Database |
subjects | Annotations Editing Garments Sewing Task complexity |
title | AIpparel: A Large Multimodal Generative Model for Digital Garments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AIpparel:%20A%20Large%20Multimodal%20Generative%20Model%20for%20Digital%20Garments&rft.jtitle=arXiv.org&rft.au=Nakayama,%20Kiyohiro&rft.date=2024-12-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141682355%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31416823553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141682355&rft_id=info:pmid/&rfr_iscdi=true |