Loading…

Free energy minimizers with radial densities: classification and quantitative stability

We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the con...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Shrey Aryan, Silini, Lauro
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shrey Aryan
Silini, Lauro
description We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141682899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141682899</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416828993</originalsourceid><addsrcrecordid>eNqNikEKgkAUQIcgSMo7fGgt6Iyato2kAwQtY9JvfdEx54-FnT4XHaDVg_feQnhSqSjIYilXwmduwjCU6U4mifLEpbCIgAbtfYKODHX0QcvwJvcAqyvSLVRomBwh76FsNTPVVGpHvQFtKhhGbRy5WbwQ2OkbteSmjVjWumX0f1yLbXE8H07B0_bDiOyuTT9aM6eriuIozWSW5-q_6wvk1ELT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141682899</pqid></control><display><type>article</type><title>Free energy minimizers with radial densities: classification and quantitative stability</title><source>Publicly Available Content Database</source><creator>Shrey Aryan ; Silini, Lauro</creator><creatorcontrib>Shrey Aryan ; Silini, Lauro</creatorcontrib><description>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Free energy ; Isoperimetric problem ; Optimization ; Potential energy ; Stability</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3141682899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Shrey Aryan</creatorcontrib><creatorcontrib>Silini, Lauro</creatorcontrib><title>Free energy minimizers with radial densities: classification and quantitative stability</title><title>arXiv.org</title><description>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</description><subject>Free energy</subject><subject>Isoperimetric problem</subject><subject>Optimization</subject><subject>Potential energy</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKgkAUQIcgSMo7fGgt6Iyato2kAwQtY9JvfdEx54-FnT4XHaDVg_feQnhSqSjIYilXwmduwjCU6U4mifLEpbCIgAbtfYKODHX0QcvwJvcAqyvSLVRomBwh76FsNTPVVGpHvQFtKhhGbRy5WbwQ2OkbteSmjVjWumX0f1yLbXE8H07B0_bDiOyuTT9aM6eriuIozWSW5-q_6wvk1ELT</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Shrey Aryan</creator><creator>Silini, Lauro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>Free energy minimizers with radial densities: classification and quantitative stability</title><author>Shrey Aryan ; Silini, Lauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416828993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Free energy</topic><topic>Isoperimetric problem</topic><topic>Optimization</topic><topic>Potential energy</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Shrey Aryan</creatorcontrib><creatorcontrib>Silini, Lauro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrey Aryan</au><au>Silini, Lauro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Free energy minimizers with radial densities: classification and quantitative stability</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3141682899
source Publicly Available Content Database
subjects Free energy
Isoperimetric problem
Optimization
Potential energy
Stability
title Free energy minimizers with radial densities: classification and quantitative stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Free%20energy%20minimizers%20with%20radial%20densities:%20classification%20and%20quantitative%20stability&rft.jtitle=arXiv.org&rft.au=Shrey%20Aryan&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141682899%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31416828993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141682899&rft_id=info:pmid/&rfr_iscdi=true