Loading…
Free energy minimizers with radial densities: classification and quantitative stability
We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the con...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shrey Aryan Silini, Lauro |
description | We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3141682899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141682899</sourcerecordid><originalsourceid>FETCH-proquest_journals_31416828993</originalsourceid><addsrcrecordid>eNqNikEKgkAUQIcgSMo7fGgt6Iyato2kAwQtY9JvfdEx54-FnT4XHaDVg_feQnhSqSjIYilXwmduwjCU6U4mifLEpbCIgAbtfYKODHX0QcvwJvcAqyvSLVRomBwh76FsNTPVVGpHvQFtKhhGbRy5WbwQ2OkbteSmjVjWumX0f1yLbXE8H07B0_bDiOyuTT9aM6eriuIozWSW5-q_6wvk1ELT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141682899</pqid></control><display><type>article</type><title>Free energy minimizers with radial densities: classification and quantitative stability</title><source>Publicly Available Content Database</source><creator>Shrey Aryan ; Silini, Lauro</creator><creatorcontrib>Shrey Aryan ; Silini, Lauro</creatorcontrib><description>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Free energy ; Isoperimetric problem ; Optimization ; Potential energy ; Stability</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3141682899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Shrey Aryan</creatorcontrib><creatorcontrib>Silini, Lauro</creatorcontrib><title>Free energy minimizers with radial densities: classification and quantitative stability</title><title>arXiv.org</title><description>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</description><subject>Free energy</subject><subject>Isoperimetric problem</subject><subject>Optimization</subject><subject>Potential energy</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKgkAUQIcgSMo7fGgt6Iyato2kAwQtY9JvfdEx54-FnT4XHaDVg_feQnhSqSjIYilXwmduwjCU6U4mifLEpbCIgAbtfYKODHX0QcvwJvcAqyvSLVRomBwh76FsNTPVVGpHvQFtKhhGbRy5WbwQ2OkbteSmjVjWumX0f1yLbXE8H07B0_bDiOyuTT9aM6eriuIozWSW5-q_6wvk1ELT</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Shrey Aryan</creator><creator>Silini, Lauro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241205</creationdate><title>Free energy minimizers with radial densities: classification and quantitative stability</title><author>Shrey Aryan ; Silini, Lauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31416828993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Free energy</topic><topic>Isoperimetric problem</topic><topic>Optimization</topic><topic>Potential energy</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Shrey Aryan</creatorcontrib><creatorcontrib>Silini, Lauro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrey Aryan</au><au>Silini, Lauro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Free energy minimizers with radial densities: classification and quantitative stability</atitle><jtitle>arXiv.org</jtitle><date>2024-12-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the isoperimetric problem with a potential energy \(g\) in \(\mathbb{R}^n\) weighted by a radial density \(f\) and analyze the geometric properties of minimizers. Notably, we construct two counterexamples demonstrating that, in contrast to the classical isoperimetric case \(g = 0\), the condition \(\ln(f)'' + g' \geq 0\) does not generally guarantee the global optimality of centered spheres. However, we demonstrate that centered spheres are globally optimal when both \(f\) and \(g\) are monotone. Additionally, we strengthen this result by deriving a sharp quantitative stability inequality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3141682899 |
source | Publicly Available Content Database |
subjects | Free energy Isoperimetric problem Optimization Potential energy Stability |
title | Free energy minimizers with radial densities: classification and quantitative stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Free%20energy%20minimizers%20with%20radial%20densities:%20classification%20and%20quantitative%20stability&rft.jtitle=arXiv.org&rft.au=Shrey%20Aryan&rft.date=2024-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3141682899%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31416828993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141682899&rft_id=info:pmid/&rfr_iscdi=true |