Loading…
Quantized Hall drift in a frequency-encoded photonic Chern insulator
The prospect of developing more efficient classical or quantum photonic devices through the suppression of backscattering is a major driving force for the field of topological photonics. However, genuine protection against backscattering in photonics requires implementing architectures with broken t...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The prospect of developing more efficient classical or quantum photonic devices through the suppression of backscattering is a major driving force for the field of topological photonics. However, genuine protection against backscattering in photonics requires implementing architectures with broken time-reversal which is technically challenging. Here, we make use of a frequency-encoded synthetic dimension scheme in an optical fibre loop platform to experimentally realise a photonic Chern insulator inspired from the Haldane model where time-reversal is explicitly broken through temporal modulation. The bands' topology is assessed by reconstructing the Bloch states' geometry across the Brillouin zone. We further highlight its consequences by measuring a driven-dissipative analogue of the quantized transverse Hall conductivity. Our results thus open the door to harnessing topologically protected unidirectional transport of light in frequency-multiplexed photonic systems. |
---|---|
ISSN: | 2331-8422 |