Loading…

Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors

Flexible zinc-ion hybrid supercapacitors (f-ZHSCs), with their inherent safety, combine the advantages of the high power density of supercapacitors and the high energy density of zinc-ion batteries, making them a promising energy supply device for wearable and implantable devices. However, commonly...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-06, Vol.12 (47), p.32895-32903
Main Authors: Cao, Yuyang, Wei, Shiqiang, Xia, Yujian, Zhou, Quan, Wang, Yixiu, Xu, Wenjie, Wang, Changda, Chen, Shuangming, Li, Song
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 32903
container_issue 47
container_start_page 32895
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Cao, Yuyang
Wei, Shiqiang
Xia, Yujian
Zhou, Quan
Wang, Yixiu
Xu, Wenjie
Wang, Changda
Chen, Shuangming
Li, Song
description Flexible zinc-ion hybrid supercapacitors (f-ZHSCs), with their inherent safety, combine the advantages of the high power density of supercapacitors and the high energy density of zinc-ion batteries, making them a promising energy supply device for wearable and implantable devices. However, commonly used rigid cathode materials and fracture-prone metallic current collectors encounter significant challenges, such as inadequate flexibility and compromised cycling stability, which impede the further development of f-ZHSCs. Herein, we design a free-standing flexible membrane electrode VN@CNT for f-ZHSCs through a nitridation strategy. Soft X-ray absorption spectroscopy (s-XAS) reveals the boosted occupation of electrons in the V eg orbital 3dx2−y2 state after nitridation, leading to enhanced metallicity and conductivity. As a result, the VN@CNT flexible electrode exhibits an excellent specific capacitance of 314.44 F g−1 at 0.5 A g−1. Moreover, it demonstrates exceptional rate capability, retaining 80.17% of its capacitance at a high current density of 10 A g−1 compared to that of 0.5 A g−1. Importantly, it also shows excellent flexibility, enduring bending angles of 0 to 180° and showing no detectable degradation in capacitance after 1200 bending cycles. By design and in-depth study of the local structure of the flexible electrode, this work provides insight into the development of flexible electronics.
doi_str_mv 10.1039/d4ta02102a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142239954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142239954</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-a6f9c4a26e369aa1118e844e5534508bef18f22838007f3c4b09518beb8e4a3b3</originalsourceid><addsrcrecordid>eNo9T0tLxDAYDKLgsu7FXxDwHM2r3eSmFF-w1Mu6By9Lkn7ZdilNTVLQf2994FxmGJgZBqFLRq8ZFfqmkdlQzig3J2jBaUHJWury9F8rdY5WKR3pDEVpqfUCDXWXY9eY3IWB2BBShgbvMBxwcG4af3wcPDZ4V99W9Rb7Hj462wOGHlyOoQHsQ8Rtd2hJNBnw20C-M-2nnXtxmkaIzozGdTnEdIHOvOkTrP54iV4f7rfVE9m8PD5XdxsyMiYyMaXXThpegii1MYwxBUpKKAohC6oseKY850rMN9ZeOGmpLtjsWwXSCCuW6Oq3d4zhfYKU98cwxWGe3AsmORdaF1J8AdD6W2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142239954</pqid></control><display><type>article</type><title>Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Cao, Yuyang ; Wei, Shiqiang ; Xia, Yujian ; Zhou, Quan ; Wang, Yixiu ; Xu, Wenjie ; Wang, Changda ; Chen, Shuangming ; Li, Song</creator><creatorcontrib>Cao, Yuyang ; Wei, Shiqiang ; Xia, Yujian ; Zhou, Quan ; Wang, Yixiu ; Xu, Wenjie ; Wang, Changda ; Chen, Shuangming ; Li, Song</creatorcontrib><description>Flexible zinc-ion hybrid supercapacitors (f-ZHSCs), with their inherent safety, combine the advantages of the high power density of supercapacitors and the high energy density of zinc-ion batteries, making them a promising energy supply device for wearable and implantable devices. However, commonly used rigid cathode materials and fracture-prone metallic current collectors encounter significant challenges, such as inadequate flexibility and compromised cycling stability, which impede the further development of f-ZHSCs. Herein, we design a free-standing flexible membrane electrode VN@CNT for f-ZHSCs through a nitridation strategy. Soft X-ray absorption spectroscopy (s-XAS) reveals the boosted occupation of electrons in the V eg orbital 3dx2−y2 state after nitridation, leading to enhanced metallicity and conductivity. As a result, the VN@CNT flexible electrode exhibits an excellent specific capacitance of 314.44 F g−1 at 0.5 A g−1. Moreover, it demonstrates exceptional rate capability, retaining 80.17% of its capacitance at a high current density of 10 A g−1 compared to that of 0.5 A g−1. Importantly, it also shows excellent flexibility, enduring bending angles of 0 to 180° and showing no detectable degradation in capacitance after 1200 bending cycles. By design and in-depth study of the local structure of the flexible electrode, this work provides insight into the development of flexible electronics.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta02102a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Bending ; Capacitance ; Electrode materials ; Electrodes ; Flexibility ; Flexible components ; Metallicity ; Soft x rays ; Supercapacitors ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-06, Vol.12 (47), p.32895-32903</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cao, Yuyang</creatorcontrib><creatorcontrib>Wei, Shiqiang</creatorcontrib><creatorcontrib>Xia, Yujian</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Wang, Yixiu</creatorcontrib><creatorcontrib>Xu, Wenjie</creatorcontrib><creatorcontrib>Wang, Changda</creatorcontrib><creatorcontrib>Chen, Shuangming</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><title>Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Flexible zinc-ion hybrid supercapacitors (f-ZHSCs), with their inherent safety, combine the advantages of the high power density of supercapacitors and the high energy density of zinc-ion batteries, making them a promising energy supply device for wearable and implantable devices. However, commonly used rigid cathode materials and fracture-prone metallic current collectors encounter significant challenges, such as inadequate flexibility and compromised cycling stability, which impede the further development of f-ZHSCs. Herein, we design a free-standing flexible membrane electrode VN@CNT for f-ZHSCs through a nitridation strategy. Soft X-ray absorption spectroscopy (s-XAS) reveals the boosted occupation of electrons in the V eg orbital 3dx2−y2 state after nitridation, leading to enhanced metallicity and conductivity. As a result, the VN@CNT flexible electrode exhibits an excellent specific capacitance of 314.44 F g−1 at 0.5 A g−1. Moreover, it demonstrates exceptional rate capability, retaining 80.17% of its capacitance at a high current density of 10 A g−1 compared to that of 0.5 A g−1. Importantly, it also shows excellent flexibility, enduring bending angles of 0 to 180° and showing no detectable degradation in capacitance after 1200 bending cycles. By design and in-depth study of the local structure of the flexible electrode, this work provides insight into the development of flexible electronics.</description><subject>Absorption spectroscopy</subject><subject>Bending</subject><subject>Capacitance</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Flexibility</subject><subject>Flexible components</subject><subject>Metallicity</subject><subject>Soft x rays</subject><subject>Supercapacitors</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9T0tLxDAYDKLgsu7FXxDwHM2r3eSmFF-w1Mu6By9Lkn7ZdilNTVLQf2994FxmGJgZBqFLRq8ZFfqmkdlQzig3J2jBaUHJWury9F8rdY5WKR3pDEVpqfUCDXWXY9eY3IWB2BBShgbvMBxwcG4af3wcPDZ4V99W9Rb7Hj462wOGHlyOoQHsQ8Rtd2hJNBnw20C-M-2nnXtxmkaIzozGdTnEdIHOvOkTrP54iV4f7rfVE9m8PD5XdxsyMiYyMaXXThpegii1MYwxBUpKKAohC6oseKY850rMN9ZeOGmpLtjsWwXSCCuW6Oq3d4zhfYKU98cwxWGe3AsmORdaF1J8AdD6W2g</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Cao, Yuyang</creator><creator>Wei, Shiqiang</creator><creator>Xia, Yujian</creator><creator>Zhou, Quan</creator><creator>Wang, Yixiu</creator><creator>Xu, Wenjie</creator><creator>Wang, Changda</creator><creator>Chen, Shuangming</creator><creator>Li, Song</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20240614</creationdate><title>Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors</title><author>Cao, Yuyang ; Wei, Shiqiang ; Xia, Yujian ; Zhou, Quan ; Wang, Yixiu ; Xu, Wenjie ; Wang, Changda ; Chen, Shuangming ; Li, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-a6f9c4a26e369aa1118e844e5534508bef18f22838007f3c4b09518beb8e4a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Bending</topic><topic>Capacitance</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Flexibility</topic><topic>Flexible components</topic><topic>Metallicity</topic><topic>Soft x rays</topic><topic>Supercapacitors</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuyang</creatorcontrib><creatorcontrib>Wei, Shiqiang</creatorcontrib><creatorcontrib>Xia, Yujian</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Wang, Yixiu</creatorcontrib><creatorcontrib>Xu, Wenjie</creatorcontrib><creatorcontrib>Wang, Changda</creatorcontrib><creatorcontrib>Chen, Shuangming</creatorcontrib><creatorcontrib>Li, Song</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuyang</au><au>Wei, Shiqiang</au><au>Xia, Yujian</au><au>Zhou, Quan</au><au>Wang, Yixiu</au><au>Xu, Wenjie</au><au>Wang, Changda</au><au>Chen, Shuangming</au><au>Li, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-06-14</date><risdate>2024</risdate><volume>12</volume><issue>47</issue><spage>32895</spage><epage>32903</epage><pages>32895-32903</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Flexible zinc-ion hybrid supercapacitors (f-ZHSCs), with their inherent safety, combine the advantages of the high power density of supercapacitors and the high energy density of zinc-ion batteries, making them a promising energy supply device for wearable and implantable devices. However, commonly used rigid cathode materials and fracture-prone metallic current collectors encounter significant challenges, such as inadequate flexibility and compromised cycling stability, which impede the further development of f-ZHSCs. Herein, we design a free-standing flexible membrane electrode VN@CNT for f-ZHSCs through a nitridation strategy. Soft X-ray absorption spectroscopy (s-XAS) reveals the boosted occupation of electrons in the V eg orbital 3dx2−y2 state after nitridation, leading to enhanced metallicity and conductivity. As a result, the VN@CNT flexible electrode exhibits an excellent specific capacitance of 314.44 F g−1 at 0.5 A g−1. Moreover, it demonstrates exceptional rate capability, retaining 80.17% of its capacitance at a high current density of 10 A g−1 compared to that of 0.5 A g−1. Importantly, it also shows excellent flexibility, enduring bending angles of 0 to 180° and showing no detectable degradation in capacitance after 1200 bending cycles. By design and in-depth study of the local structure of the flexible electrode, this work provides insight into the development of flexible electronics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta02102a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-06, Vol.12 (47), p.32895-32903
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3142239954
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Absorption spectroscopy
Bending
Capacitance
Electrode materials
Electrodes
Flexibility
Flexible components
Metallicity
Soft x rays
Supercapacitors
X ray absorption
X-ray absorption spectroscopy
title Nitridation-boosted V eg occupation of a VN@CNT flexible electrode for high-rate Zn-ion hybrid supercapacitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitridation-boosted%20V%20eg%20occupation%20of%20a%20VN@CNT%20flexible%20electrode%20for%20high-rate%20Zn-ion%20hybrid%20supercapacitors&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Cao,%20Yuyang&rft.date=2024-06-14&rft.volume=12&rft.issue=47&rft.spage=32895&rft.epage=32903&rft.pages=32895-32903&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta02102a&rft_dat=%3Cproquest%3E3142239954%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-a6f9c4a26e369aa1118e844e5534508bef18f22838007f3c4b09518beb8e4a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142239954&rft_id=info:pmid/&rfr_iscdi=true