Loading…
A robust optimisation approach for the placement of forest fire suppression resources
This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occur...
Saved in:
Published in: | International transactions in operational research 2025-05, Vol.32 (3), p.1312-1342 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3 |
container_end_page | 1342 |
container_issue | 3 |
container_start_page | 1312 |
container_title | International transactions in operational research |
container_volume | 32 |
creator | Mendes, André Bergsten e Alvelos, Filipe Pereira |
description | This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions. |
doi_str_mv | 10.1111/itor.13524 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142264610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142264610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoWnaS5_A0FvBqVaWpfgYQn8CgUBJzkKWV0QhiVzJpuTtK9c9dy8Dyze7wxDyCHQGaV5c58MMipLxKzIBLsu8qKrymkxoJapcUBC35C7GA6UUSpATsltkwdd97DLfdu7kou6cP2e6bYPXZp9ZH7Juj1l71AZPeE6cHZaYHNYFzGKfUIxxcCX1fTAY78mN1ceID386Jbu31-3yI19v3lfLxTo3UFGezwEawwoAhpzNC24bLBk2okAtmLSSS2lkTXXDBAiLZYO2qi2Tc2toXYummJKn8W5K-9WnTOqQApzTS1UAZ0xwATRRzyNlgo8xoFVtcCcdLgqoGmpTQ23qt7YEwwh_uyNe_iHVarv5HD0_A5NxXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142264610</pqid></control><display><type>article</type><title>A robust optimisation approach for the placement of forest fire suppression resources</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</creator><creatorcontrib>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</creatorcontrib><description>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.13524</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; fire suppression ; forest fire ; Forest fires ; Mathematical programming ; Monte Carlo simulation ; Optimization ; Risk analysis ; Risk assessment ; Robust control ; robust optimisation ; Robustness (mathematics) ; Tabu search ; Topographic databases</subject><ispartof>International transactions in operational research, 2025-05, Vol.32 (3), p.1312-1342</ispartof><rights>2024 International Federation of Operational Research Societies.</rights><rights>2025 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</cites><orcidid>0000-0002-7258-0396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendes, André Bergsten</creatorcontrib><creatorcontrib>e Alvelos, Filipe Pereira</creatorcontrib><title>A robust optimisation approach for the placement of forest fire suppression resources</title><title>International transactions in operational research</title><description>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</description><subject>Algorithms</subject><subject>fire suppression</subject><subject>forest fire</subject><subject>Forest fires</subject><subject>Mathematical programming</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Robust control</subject><subject>robust optimisation</subject><subject>Robustness (mathematics)</subject><subject>Tabu search</subject><subject>Topographic databases</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoWnaS5_A0FvBqVaWpfgYQn8CgUBJzkKWV0QhiVzJpuTtK9c9dy8Dyze7wxDyCHQGaV5c58MMipLxKzIBLsu8qKrymkxoJapcUBC35C7GA6UUSpATsltkwdd97DLfdu7kou6cP2e6bYPXZp9ZH7Juj1l71AZPeE6cHZaYHNYFzGKfUIxxcCX1fTAY78mN1ceID386Jbu31-3yI19v3lfLxTo3UFGezwEawwoAhpzNC24bLBk2okAtmLSSS2lkTXXDBAiLZYO2qi2Tc2toXYummJKn8W5K-9WnTOqQApzTS1UAZ0xwATRRzyNlgo8xoFVtcCcdLgqoGmpTQ23qt7YEwwh_uyNe_iHVarv5HD0_A5NxXA</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Mendes, André Bergsten</creator><creator>e Alvelos, Filipe Pereira</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7258-0396</orcidid></search><sort><creationdate>202505</creationdate><title>A robust optimisation approach for the placement of forest fire suppression resources</title><author>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>fire suppression</topic><topic>forest fire</topic><topic>Forest fires</topic><topic>Mathematical programming</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Robust control</topic><topic>robust optimisation</topic><topic>Robustness (mathematics)</topic><topic>Tabu search</topic><topic>Topographic databases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes, André Bergsten</creatorcontrib><creatorcontrib>e Alvelos, Filipe Pereira</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes, André Bergsten</au><au>e Alvelos, Filipe Pereira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust optimisation approach for the placement of forest fire suppression resources</atitle><jtitle>International transactions in operational research</jtitle><date>2025-05</date><risdate>2025</risdate><volume>32</volume><issue>3</issue><spage>1312</spage><epage>1342</epage><pages>1312-1342</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.13524</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-7258-0396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6016 |
ispartof | International transactions in operational research, 2025-05, Vol.32 (3), p.1312-1342 |
issn | 0969-6016 1475-3995 |
language | eng |
recordid | cdi_proquest_journals_3142264610 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms fire suppression forest fire Forest fires Mathematical programming Monte Carlo simulation Optimization Risk analysis Risk assessment Robust control robust optimisation Robustness (mathematics) Tabu search Topographic databases |
title | A robust optimisation approach for the placement of forest fire suppression resources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20optimisation%20approach%20for%20the%20placement%20of%20forest%20fire%20suppression%20resources&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Mendes,%20Andr%C3%A9%20Bergsten&rft.date=2025-05&rft.volume=32&rft.issue=3&rft.spage=1312&rft.epage=1342&rft.pages=1312-1342&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.13524&rft_dat=%3Cproquest_cross%3E3142264610%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142264610&rft_id=info:pmid/&rfr_iscdi=true |