Loading…

A robust optimisation approach for the placement of forest fire suppression resources

This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occur...

Full description

Saved in:
Bibliographic Details
Published in:International transactions in operational research 2025-05, Vol.32 (3), p.1312-1342
Main Authors: Mendes, André Bergsten, e Alvelos, Filipe Pereira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3
container_end_page 1342
container_issue 3
container_start_page 1312
container_title International transactions in operational research
container_volume 32
creator Mendes, André Bergsten
e Alvelos, Filipe Pereira
description This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.
doi_str_mv 10.1111/itor.13524
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142264610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142264610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoWnaS5_A0FvBqVaWpfgYQn8CgUBJzkKWV0QhiVzJpuTtK9c9dy8Dyze7wxDyCHQGaV5c58MMipLxKzIBLsu8qKrymkxoJapcUBC35C7GA6UUSpATsltkwdd97DLfdu7kou6cP2e6bYPXZp9ZH7Juj1l71AZPeE6cHZaYHNYFzGKfUIxxcCX1fTAY78mN1ceID386Jbu31-3yI19v3lfLxTo3UFGezwEawwoAhpzNC24bLBk2okAtmLSSS2lkTXXDBAiLZYO2qi2Tc2toXYummJKn8W5K-9WnTOqQApzTS1UAZ0xwATRRzyNlgo8xoFVtcCcdLgqoGmpTQ23qt7YEwwh_uyNe_iHVarv5HD0_A5NxXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142264610</pqid></control><display><type>article</type><title>A robust optimisation approach for the placement of forest fire suppression resources</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</creator><creatorcontrib>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</creatorcontrib><description>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.13524</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; fire suppression ; forest fire ; Forest fires ; Mathematical programming ; Monte Carlo simulation ; Optimization ; Risk analysis ; Risk assessment ; Robust control ; robust optimisation ; Robustness (mathematics) ; Tabu search ; Topographic databases</subject><ispartof>International transactions in operational research, 2025-05, Vol.32 (3), p.1312-1342</ispartof><rights>2024 International Federation of Operational Research Societies.</rights><rights>2025 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</cites><orcidid>0000-0002-7258-0396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendes, André Bergsten</creatorcontrib><creatorcontrib>e Alvelos, Filipe Pereira</creatorcontrib><title>A robust optimisation approach for the placement of forest fire suppression resources</title><title>International transactions in operational research</title><description>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</description><subject>Algorithms</subject><subject>fire suppression</subject><subject>forest fire</subject><subject>Forest fires</subject><subject>Mathematical programming</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Robust control</subject><subject>robust optimisation</subject><subject>Robustness (mathematics)</subject><subject>Tabu search</subject><subject>Topographic databases</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoWnaS5_A0FvBqVaWpfgYQn8CgUBJzkKWV0QhiVzJpuTtK9c9dy8Dyze7wxDyCHQGaV5c58MMipLxKzIBLsu8qKrymkxoJapcUBC35C7GA6UUSpATsltkwdd97DLfdu7kou6cP2e6bYPXZp9ZH7Juj1l71AZPeE6cHZaYHNYFzGKfUIxxcCX1fTAY78mN1ceID386Jbu31-3yI19v3lfLxTo3UFGezwEawwoAhpzNC24bLBk2okAtmLSSS2lkTXXDBAiLZYO2qi2Tc2toXYummJKn8W5K-9WnTOqQApzTS1UAZ0xwATRRzyNlgo8xoFVtcCcdLgqoGmpTQ23qt7YEwwh_uyNe_iHVarv5HD0_A5NxXA</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Mendes, André Bergsten</creator><creator>e Alvelos, Filipe Pereira</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7258-0396</orcidid></search><sort><creationdate>202505</creationdate><title>A robust optimisation approach for the placement of forest fire suppression resources</title><author>Mendes, André Bergsten ; e Alvelos, Filipe Pereira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>fire suppression</topic><topic>forest fire</topic><topic>Forest fires</topic><topic>Mathematical programming</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Robust control</topic><topic>robust optimisation</topic><topic>Robustness (mathematics)</topic><topic>Tabu search</topic><topic>Topographic databases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes, André Bergsten</creatorcontrib><creatorcontrib>e Alvelos, Filipe Pereira</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes, André Bergsten</au><au>e Alvelos, Filipe Pereira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust optimisation approach for the placement of forest fire suppression resources</atitle><jtitle>International transactions in operational research</jtitle><date>2025-05</date><risdate>2025</risdate><volume>32</volume><issue>3</issue><spage>1312</spage><epage>1342</epage><pages>1312-1342</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>This research develops an initial attack plan for combating forest fires in any wildland areas susceptible to fire outbreaks. To be eligible for such a plan, the landscape must have been previously mapped and modelled concerning spatial and topographic data and fuel levels. Thus, when ignition occurs, one can predict the expected fire behaviour in terms of spread direction and rate of spread. With such information, decisions can be taken on where and when to position the suppression resources. This paper extends a recent contribution to this subject, generalising each node's resource requirement, allowing a more precise modelling of non‐homogeneous landscapes. Moreover, we treat the cases where the estimated number of resources may not be sufficient to deal with the fire intensity, which becomes revealed only at the fire scene. In such cases, additional resources may be needed to contain the fire effectively. This worst‐case approach is modelled with the support of the robust optimisation paradigm. We propose a deterministic mathematical programming model, a robust optimisation counterpart, and a robust tabu search (RoTS) algorithm. We adapt instances from the literature, which are optimally solved by a commercial solver and used for assessing the quality of the RoTS. The proposed algorithm could optimally solve 94 of 96 instances. Finally, we conducted a Monte Carlo simulation as part of a risk analysis assessment of the generated solutions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.13524</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-7258-0396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2025-05, Vol.32 (3), p.1312-1342
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_3142264610
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
fire suppression
forest fire
Forest fires
Mathematical programming
Monte Carlo simulation
Optimization
Risk analysis
Risk assessment
Robust control
robust optimisation
Robustness (mathematics)
Tabu search
Topographic databases
title A robust optimisation approach for the placement of forest fire suppression resources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20optimisation%20approach%20for%20the%20placement%20of%20forest%20fire%20suppression%20resources&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Mendes,%20Andr%C3%A9%20Bergsten&rft.date=2025-05&rft.volume=32&rft.issue=3&rft.spage=1312&rft.epage=1342&rft.pages=1312-1342&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.13524&rft_dat=%3Cproquest_cross%3E3142264610%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1904-811dc23112e42834fde52ed63ea627f7477c7b0ad2616fe5def9bf278fc0bb6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142264610&rft_id=info:pmid/&rfr_iscdi=true