Loading…

Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting

Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688
Main Authors: Wang, Dan, Chu, Yuan, Wu, Youzheng, Zhu, Mengkang, Pan, Lin, Li, Ruopeng, Chen, Yukai, Wang, Wenchang, Mitsuzaki, Naotoshi, Chen, Zhidong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103
container_end_page 33688
container_issue 48
container_start_page 3368
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Wang, Dan
Chu, Yuan
Wu, Youzheng
Zhu, Mengkang
Pan, Lin
Li, Ruopeng
Chen, Yukai
Wang, Wenchang
Mitsuzaki, Naotoshi
Chen, Zhidong
description Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized in situ on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm −2 ) and 268 mV (50 mA cm −2 ) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm −2 for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm −2 ) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH). The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.
doi_str_mv 10.1039/d4ta05681g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142548439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142548439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</originalsourceid><addsrcrecordid>eNpFkcFLwzAYxYMoOHQX78IH3oRquiZtcxyb24ShB-e5pFnSZnbNTFJHr_7lZk5mLnl8_PIe3wtCNzF-iHHCHtfEc0zTPK7O0GCEKY4ywtLzk87zSzR0boPDyTFOGRug77e-lbbSzmsBwnS7RrcVGAUcJt2LBt40poe99vVhYmYSltMF1NJLa5y3nfCdlWBaaLX4kA0ow7fgzZ7bNdS6qiOplBZatqIH8yVt8IM9D6_BhSjvQ9o1ulC8cXL4d1-h99nTarKIlq_z58l4GYk4wz4iqqRKcZYxxiRPsySmnCSEkozmo5wk64wLlpUpl5wGTTiVApeZLAnFtAwFXaG7o-_Oms9OOl9sTGfbEFkkMRlREkxYoO6PlAgLOitVsbN6y21fxLg41FxMyWr8W_M8wLdH2Dpx4v6_IfkBSsN66Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142548439</pqid></control><display><type>article</type><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</creator><creatorcontrib>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</creatorcontrib><description>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized in situ on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm −2 ) and 268 mV (50 mA cm −2 ) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm −2 for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm −2 ) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH). The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05681g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical synthesis ; Density functional theory ; Displays ; Electrolysis ; Electron distribution ; Electrons ; Free energy ; Green hydrogen ; Heterojunctions ; Heterostructures ; Hydrogen evolution reactions ; Hydrogen production ; Intermediates ; Intermetallic compounds ; Low voltage ; Metal foams ; Nickel ; Oxygen evolution reactions ; Splitting ; Stability ; Voltage ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</cites><orcidid>0000-0003-1652-5605 ; 0000-0002-9383-9563 ; 0000-0001-7281-4853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Chu, Yuan</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>Zhu, Mengkang</creatorcontrib><creatorcontrib>Pan, Lin</creatorcontrib><creatorcontrib>Li, Ruopeng</creatorcontrib><creatorcontrib>Chen, Yukai</creatorcontrib><creatorcontrib>Wang, Wenchang</creatorcontrib><creatorcontrib>Mitsuzaki, Naotoshi</creatorcontrib><creatorcontrib>Chen, Zhidong</creatorcontrib><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized in situ on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm −2 ) and 268 mV (50 mA cm −2 ) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm −2 for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm −2 ) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH). The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</description><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Displays</subject><subject>Electrolysis</subject><subject>Electron distribution</subject><subject>Electrons</subject><subject>Free energy</subject><subject>Green hydrogen</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Low voltage</subject><subject>Metal foams</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Stability</subject><subject>Voltage</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkcFLwzAYxYMoOHQX78IH3oRquiZtcxyb24ShB-e5pFnSZnbNTFJHr_7lZk5mLnl8_PIe3wtCNzF-iHHCHtfEc0zTPK7O0GCEKY4ywtLzk87zSzR0boPDyTFOGRug77e-lbbSzmsBwnS7RrcVGAUcJt2LBt40poe99vVhYmYSltMF1NJLa5y3nfCdlWBaaLX4kA0ow7fgzZ7bNdS6qiOplBZatqIH8yVt8IM9D6_BhSjvQ9o1ulC8cXL4d1-h99nTarKIlq_z58l4GYk4wz4iqqRKcZYxxiRPsySmnCSEkozmo5wk64wLlpUpl5wGTTiVApeZLAnFtAwFXaG7o-_Oms9OOl9sTGfbEFkkMRlREkxYoO6PlAgLOitVsbN6y21fxLg41FxMyWr8W_M8wLdH2Dpx4v6_IfkBSsN66Q</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Wang, Dan</creator><creator>Chu, Yuan</creator><creator>Wu, Youzheng</creator><creator>Zhu, Mengkang</creator><creator>Pan, Lin</creator><creator>Li, Ruopeng</creator><creator>Chen, Yukai</creator><creator>Wang, Wenchang</creator><creator>Mitsuzaki, Naotoshi</creator><creator>Chen, Zhidong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1652-5605</orcidid><orcidid>https://orcid.org/0000-0002-9383-9563</orcidid><orcidid>https://orcid.org/0000-0001-7281-4853</orcidid></search><sort><creationdate>20241210</creationdate><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><author>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Displays</topic><topic>Electrolysis</topic><topic>Electron distribution</topic><topic>Electrons</topic><topic>Free energy</topic><topic>Green hydrogen</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Low voltage</topic><topic>Metal foams</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Stability</topic><topic>Voltage</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Chu, Yuan</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>Zhu, Mengkang</creatorcontrib><creatorcontrib>Pan, Lin</creatorcontrib><creatorcontrib>Li, Ruopeng</creatorcontrib><creatorcontrib>Chen, Yukai</creatorcontrib><creatorcontrib>Wang, Wenchang</creatorcontrib><creatorcontrib>Mitsuzaki, Naotoshi</creatorcontrib><creatorcontrib>Chen, Zhidong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dan</au><au>Chu, Yuan</au><au>Wu, Youzheng</au><au>Zhu, Mengkang</au><au>Pan, Lin</au><au>Li, Ruopeng</au><au>Chen, Yukai</au><au>Wang, Wenchang</au><au>Mitsuzaki, Naotoshi</au><au>Chen, Zhidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>12</volume><issue>48</issue><spage>3368</spage><epage>33688</epage><pages>3368-33688</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized in situ on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm −2 ) and 268 mV (50 mA cm −2 ) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm −2 for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm −2 ) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH). The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05681g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1652-5605</orcidid><orcidid>https://orcid.org/0000-0002-9383-9563</orcidid><orcidid>https://orcid.org/0000-0001-7281-4853</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3142548439
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Catalysts
Chemical synthesis
Density functional theory
Displays
Electrolysis
Electron distribution
Electrons
Free energy
Green hydrogen
Heterojunctions
Heterostructures
Hydrogen evolution reactions
Hydrogen production
Intermediates
Intermetallic compounds
Low voltage
Metal foams
Nickel
Oxygen evolution reactions
Splitting
Stability
Voltage
Water splitting
title Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20coupling%20of%20a%20CuNi%20alloy%20with%20a%20CoFe%20LDH%20heterostructure%20on%20nickel%20foam%20toward%20high-efficiency%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Dan&rft.date=2024-12-10&rft.volume=12&rft.issue=48&rft.spage=3368&rft.epage=33688&rft.pages=3368-33688&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05681g&rft_dat=%3Cproquest_cross%3E3142548439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142548439&rft_id=info:pmid/&rfr_iscdi=true