Loading…
Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting
Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103 |
container_end_page | 33688 |
container_issue | 48 |
container_start_page | 3368 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Wang, Dan Chu, Yuan Wu, Youzheng Zhu, Mengkang Pan, Lin Li, Ruopeng Chen, Yukai Wang, Wenchang Mitsuzaki, Naotoshi Chen, Zhidong |
description | Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized
in situ
on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm
−2
) and 268 mV (50 mA cm
−2
) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm
−2
for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm
−2
) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH).
The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step. |
doi_str_mv | 10.1039/d4ta05681g |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142548439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142548439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</originalsourceid><addsrcrecordid>eNpFkcFLwzAYxYMoOHQX78IH3oRquiZtcxyb24ShB-e5pFnSZnbNTFJHr_7lZk5mLnl8_PIe3wtCNzF-iHHCHtfEc0zTPK7O0GCEKY4ywtLzk87zSzR0boPDyTFOGRug77e-lbbSzmsBwnS7RrcVGAUcJt2LBt40poe99vVhYmYSltMF1NJLa5y3nfCdlWBaaLX4kA0ow7fgzZ7bNdS6qiOplBZatqIH8yVt8IM9D6_BhSjvQ9o1ulC8cXL4d1-h99nTarKIlq_z58l4GYk4wz4iqqRKcZYxxiRPsySmnCSEkozmo5wk64wLlpUpl5wGTTiVApeZLAnFtAwFXaG7o-_Oms9OOl9sTGfbEFkkMRlREkxYoO6PlAgLOitVsbN6y21fxLg41FxMyWr8W_M8wLdH2Dpx4v6_IfkBSsN66Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142548439</pqid></control><display><type>article</type><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</creator><creatorcontrib>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</creatorcontrib><description>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized
in situ
on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm
−2
) and 268 mV (50 mA cm
−2
) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm
−2
for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm
−2
) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH).
The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05681g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical synthesis ; Density functional theory ; Displays ; Electrolysis ; Electron distribution ; Electrons ; Free energy ; Green hydrogen ; Heterojunctions ; Heterostructures ; Hydrogen evolution reactions ; Hydrogen production ; Intermediates ; Intermetallic compounds ; Low voltage ; Metal foams ; Nickel ; Oxygen evolution reactions ; Splitting ; Stability ; Voltage ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</cites><orcidid>0000-0003-1652-5605 ; 0000-0002-9383-9563 ; 0000-0001-7281-4853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Chu, Yuan</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>Zhu, Mengkang</creatorcontrib><creatorcontrib>Pan, Lin</creatorcontrib><creatorcontrib>Li, Ruopeng</creatorcontrib><creatorcontrib>Chen, Yukai</creatorcontrib><creatorcontrib>Wang, Wenchang</creatorcontrib><creatorcontrib>Mitsuzaki, Naotoshi</creatorcontrib><creatorcontrib>Chen, Zhidong</creatorcontrib><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized
in situ
on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm
−2
) and 268 mV (50 mA cm
−2
) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm
−2
for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm
−2
) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH).
The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</description><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Displays</subject><subject>Electrolysis</subject><subject>Electron distribution</subject><subject>Electrons</subject><subject>Free energy</subject><subject>Green hydrogen</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Low voltage</subject><subject>Metal foams</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Stability</subject><subject>Voltage</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkcFLwzAYxYMoOHQX78IH3oRquiZtcxyb24ShB-e5pFnSZnbNTFJHr_7lZk5mLnl8_PIe3wtCNzF-iHHCHtfEc0zTPK7O0GCEKY4ywtLzk87zSzR0boPDyTFOGRug77e-lbbSzmsBwnS7RrcVGAUcJt2LBt40poe99vVhYmYSltMF1NJLa5y3nfCdlWBaaLX4kA0ow7fgzZ7bNdS6qiOplBZatqIH8yVt8IM9D6_BhSjvQ9o1ulC8cXL4d1-h99nTarKIlq_z58l4GYk4wz4iqqRKcZYxxiRPsySmnCSEkozmo5wk64wLlpUpl5wGTTiVApeZLAnFtAwFXaG7o-_Oms9OOl9sTGfbEFkkMRlREkxYoO6PlAgLOitVsbN6y21fxLg41FxMyWr8W_M8wLdH2Dpx4v6_IfkBSsN66Q</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Wang, Dan</creator><creator>Chu, Yuan</creator><creator>Wu, Youzheng</creator><creator>Zhu, Mengkang</creator><creator>Pan, Lin</creator><creator>Li, Ruopeng</creator><creator>Chen, Yukai</creator><creator>Wang, Wenchang</creator><creator>Mitsuzaki, Naotoshi</creator><creator>Chen, Zhidong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1652-5605</orcidid><orcidid>https://orcid.org/0000-0002-9383-9563</orcidid><orcidid>https://orcid.org/0000-0001-7281-4853</orcidid></search><sort><creationdate>20241210</creationdate><title>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</title><author>Wang, Dan ; Chu, Yuan ; Wu, Youzheng ; Zhu, Mengkang ; Pan, Lin ; Li, Ruopeng ; Chen, Yukai ; Wang, Wenchang ; Mitsuzaki, Naotoshi ; Chen, Zhidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Displays</topic><topic>Electrolysis</topic><topic>Electron distribution</topic><topic>Electrons</topic><topic>Free energy</topic><topic>Green hydrogen</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Low voltage</topic><topic>Metal foams</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Stability</topic><topic>Voltage</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Chu, Yuan</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>Zhu, Mengkang</creatorcontrib><creatorcontrib>Pan, Lin</creatorcontrib><creatorcontrib>Li, Ruopeng</creatorcontrib><creatorcontrib>Chen, Yukai</creatorcontrib><creatorcontrib>Wang, Wenchang</creatorcontrib><creatorcontrib>Mitsuzaki, Naotoshi</creatorcontrib><creatorcontrib>Chen, Zhidong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dan</au><au>Chu, Yuan</au><au>Wu, Youzheng</au><au>Zhu, Mengkang</au><au>Pan, Lin</au><au>Li, Ruopeng</au><au>Chen, Yukai</au><au>Wang, Wenchang</au><au>Mitsuzaki, Naotoshi</au><au>Chen, Zhidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>12</volume><issue>48</issue><spage>3368</spage><epage>33688</epage><pages>3368-33688</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Accelerating the kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital for high-efficiency green hydrogen production. However, developing cost-effective and highly active bifunctional catalysts for overall water splitting electrolysis remains a huge challenge. Herein, the CuNi/CoFe LDH heterostructure is synthesized
in situ
on nickel foam (CuNi/CoFe LDH@NF) by a simple two-step electrodeposition process. The synergy of the CuNi alloy and CoFe LDH optimizes the electron distribution at the interface and improves the intrinsic activity of the HER/OER. Consequently, the optimal CuNi/CoFe LDH@NF bifunctional catalyst displays low overpotentials of 56 mV (10 mA cm
−2
) and 268 mV (50 mA cm
−2
) for the HER and OER, respectively, along with high stability in alkaline electrolyte. Remarkably, CuNi/CoFe LDH@NF as the cathode and anode requires a low voltage (1.49 V) to achieve 10 mA cm
−2
for overall water splitting. Meanwhile, it also displays favorable stability for operation for 17 h (50 mA cm
−2
) without obvious decline of the cell voltage. Density functional theory calculations indicate that constructing heterojunction interfaces promotes the redistribution of interface electrons and optimizes the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step (from *O to *OOH).
The synergy of the CuNi alloy and CoFe LDH can adjust the electron distribution at the interface and optimize the free energy of adsorbed intermediates, thereby reducing the energy barrier of the rate-determining step.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05681g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1652-5605</orcidid><orcidid>https://orcid.org/0000-0002-9383-9563</orcidid><orcidid>https://orcid.org/0000-0001-7281-4853</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-12, Vol.12 (48), p.3368-33688 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3142548439 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Catalysts Chemical synthesis Density functional theory Displays Electrolysis Electron distribution Electrons Free energy Green hydrogen Heterojunctions Heterostructures Hydrogen evolution reactions Hydrogen production Intermediates Intermetallic compounds Low voltage Metal foams Nickel Oxygen evolution reactions Splitting Stability Voltage Water splitting |
title | Synergistic coupling of a CuNi alloy with a CoFe LDH heterostructure on nickel foam toward high-efficiency overall water splitting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20coupling%20of%20a%20CuNi%20alloy%20with%20a%20CoFe%20LDH%20heterostructure%20on%20nickel%20foam%20toward%20high-efficiency%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Dan&rft.date=2024-12-10&rft.volume=12&rft.issue=48&rft.spage=3368&rft.epage=33688&rft.pages=3368-33688&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05681g&rft_dat=%3Cproquest_cross%3E3142548439%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c170t-4fb5ffa97999ea67315a434547582843d7ac97b6aea5d7a4a5ec0b7eb4505b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142548439&rft_id=info:pmid/&rfr_iscdi=true |