Loading…
Seismic Bearing Capacity of Strip Footing on Excavations Considering Soil Strength Anisotropy Using Modified Pseudo‐Dynamic and Pseudo‐Static Approaches
ABSTRACT Although considerable research has explored the static and seismic bearing capacity of strip footings on slopes or excavations, the influence of clay strength anisotropy on the bearing capacity of strip footing near excavations, specifically considering pseudo‐dynamic conditions, remains un...
Saved in:
Published in: | International journal for numerical and analytical methods in geomechanics 2025-01, Vol.49 (1), p.151-165 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Although considerable research has explored the static and seismic bearing capacity of strip footings on slopes or excavations, the influence of clay strength anisotropy on the bearing capacity of strip footing near excavations, specifically considering pseudo‐dynamic conditions, remains unexplored. This study used the finite element limit analysis (FELA) method to evaluate the impact of clay strength anisotropy on the seismic bearing capacity of strip footings. The effects of various dimensionless parameters on the bearing capacity were examined, which include shear wavelength, the setback distance ratio, vertical height ratio, soil strength ratio, soil strength heterogeneity, anisotropic ratio, and horizontal and vertical acceleration coefficients. Design charts were developed to compute the seismic bearing capacity of strip footings on nonhomogeneous and anisotropic excavations under pseudo‐static conditions. Furthermore, the effects of vertical acceleration coefficients and shear wavelength on the seismic bearing capacity of strip footing near excavation in nonhomogeneous and anisotropic soils were investigated. |
---|---|
ISSN: | 0363-9061 1096-9853 |
DOI: | 10.1002/nag.3864 |