Loading…
The surface tension of Martini 3 water mixtures
The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of various organic and inorganic molecu...
Saved in:
Published in: | arXiv.org 2024-05 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iannetti, Lorenzo Cambiaso, Sonia Rasera, Fabio Giacomello, Alberto Rossi, Giulia Bochicchio, Davide Tinti, Antonio |
description | The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of various organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapour interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artefact of Martini water freezing at room temperature. Additionally, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension, surface thickness, and bulk densities for the liquid and vapour phases. Employing the test-area method, we systematically compute the liquid-vapour surface tension across various combinations of water bead sizes and for temperatures in the range from 300 to 350 K. Our findings provide a comprehensive characterization of Martini 3.0 water intefacial properties. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations (e.g., capillary forces) to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapour interface by means of Gibbs' adsorption formalism |
doi_str_mv | 10.48550/arxiv.2405.18970 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3142719253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142719253</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-71a2bff267321e6c9cabbde756868e190753a9a8eedf59d376f48aedb71169263</originalsourceid><addsrcrecordid>eNotzctKw0AUgOFBECy1D-BuwHXSmXMyt6UUb1Bxk305Sc5giiY6M9E-vgVd_bv_E-JGq7rxxqgtpdP4XUOjTK19cOpCrABRV74BuBKbnI9KKbAOjMGV2LZvLPOSIvUsC095nCc5R_lCqYzTKFH-UOEkP8ZTWRLna3EZ6T3z5r9r0T7ct7unav_6-Ly721cUjKqcJuhiPCsImm0feuq6gZ2x3nrWQTmDFMgzD9GEAZ2NjSceOqe1DWBxLW7_tp9p_lo4l8NxXtJ0Fg-oG3A6gEH8BZ-dREM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142719253</pqid></control><display><type>article</type><title>The surface tension of Martini 3 water mixtures</title><source>Publicly Available Content Database</source><creator>Iannetti, Lorenzo ; Cambiaso, Sonia ; Rasera, Fabio ; Giacomello, Alberto ; Rossi, Giulia ; Bochicchio, Davide ; Tinti, Antonio</creator><creatorcontrib>Iannetti, Lorenzo ; Cambiaso, Sonia ; Rasera, Fabio ; Giacomello, Alberto ; Rossi, Giulia ; Bochicchio, Davide ; Tinti, Antonio</creatorcontrib><description>The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of various organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapour interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artefact of Martini water freezing at room temperature. Additionally, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension, surface thickness, and bulk densities for the liquid and vapour phases. Employing the test-area method, we systematically compute the liquid-vapour surface tension across various combinations of water bead sizes and for temperatures in the range from 300 to 350 K. Our findings provide a comprehensive characterization of Martini 3.0 water intefacial properties. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations (e.g., capillary forces) to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapour interface by means of Gibbs' adsorption formalism</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2405.18970</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bulk density ; Freezing ; Interaction parameters ; Interfacial properties ; Liquid-vapor interfaces ; Mixtures ; Room temperature ; Solvation ; Surface tension ; Vapor phases</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3142719253?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Iannetti, Lorenzo</creatorcontrib><creatorcontrib>Cambiaso, Sonia</creatorcontrib><creatorcontrib>Rasera, Fabio</creatorcontrib><creatorcontrib>Giacomello, Alberto</creatorcontrib><creatorcontrib>Rossi, Giulia</creatorcontrib><creatorcontrib>Bochicchio, Davide</creatorcontrib><creatorcontrib>Tinti, Antonio</creatorcontrib><title>The surface tension of Martini 3 water mixtures</title><title>arXiv.org</title><description>The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of various organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapour interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artefact of Martini water freezing at room temperature. Additionally, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension, surface thickness, and bulk densities for the liquid and vapour phases. Employing the test-area method, we systematically compute the liquid-vapour surface tension across various combinations of water bead sizes and for temperatures in the range from 300 to 350 K. Our findings provide a comprehensive characterization of Martini 3.0 water intefacial properties. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations (e.g., capillary forces) to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapour interface by means of Gibbs' adsorption formalism</description><subject>Bulk density</subject><subject>Freezing</subject><subject>Interaction parameters</subject><subject>Interfacial properties</subject><subject>Liquid-vapor interfaces</subject><subject>Mixtures</subject><subject>Room temperature</subject><subject>Solvation</subject><subject>Surface tension</subject><subject>Vapor phases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKw0AUgOFBECy1D-BuwHXSmXMyt6UUb1Bxk305Sc5giiY6M9E-vgVd_bv_E-JGq7rxxqgtpdP4XUOjTK19cOpCrABRV74BuBKbnI9KKbAOjMGV2LZvLPOSIvUsC095nCc5R_lCqYzTKFH-UOEkP8ZTWRLna3EZ6T3z5r9r0T7ct7unav_6-Ly721cUjKqcJuhiPCsImm0feuq6gZ2x3nrWQTmDFMgzD9GEAZ2NjSceOqe1DWBxLW7_tp9p_lo4l8NxXtJ0Fg-oG3A6gEH8BZ-dREM</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Iannetti, Lorenzo</creator><creator>Cambiaso, Sonia</creator><creator>Rasera, Fabio</creator><creator>Giacomello, Alberto</creator><creator>Rossi, Giulia</creator><creator>Bochicchio, Davide</creator><creator>Tinti, Antonio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240529</creationdate><title>The surface tension of Martini 3 water mixtures</title><author>Iannetti, Lorenzo ; Cambiaso, Sonia ; Rasera, Fabio ; Giacomello, Alberto ; Rossi, Giulia ; Bochicchio, Davide ; Tinti, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-71a2bff267321e6c9cabbde756868e190753a9a8eedf59d376f48aedb71169263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk density</topic><topic>Freezing</topic><topic>Interaction parameters</topic><topic>Interfacial properties</topic><topic>Liquid-vapor interfaces</topic><topic>Mixtures</topic><topic>Room temperature</topic><topic>Solvation</topic><topic>Surface tension</topic><topic>Vapor phases</topic><toplevel>online_resources</toplevel><creatorcontrib>Iannetti, Lorenzo</creatorcontrib><creatorcontrib>Cambiaso, Sonia</creatorcontrib><creatorcontrib>Rasera, Fabio</creatorcontrib><creatorcontrib>Giacomello, Alberto</creatorcontrib><creatorcontrib>Rossi, Giulia</creatorcontrib><creatorcontrib>Bochicchio, Davide</creatorcontrib><creatorcontrib>Tinti, Antonio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iannetti, Lorenzo</au><au>Cambiaso, Sonia</au><au>Rasera, Fabio</au><au>Giacomello, Alberto</au><au>Rossi, Giulia</au><au>Bochicchio, Davide</au><au>Tinti, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The surface tension of Martini 3 water mixtures</atitle><jtitle>arXiv.org</jtitle><date>2024-05-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of various organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapour interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artefact of Martini water freezing at room temperature. Additionally, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension, surface thickness, and bulk densities for the liquid and vapour phases. Employing the test-area method, we systematically compute the liquid-vapour surface tension across various combinations of water bead sizes and for temperatures in the range from 300 to 350 K. Our findings provide a comprehensive characterization of Martini 3.0 water intefacial properties. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations (e.g., capillary forces) to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapour interface by means of Gibbs' adsorption formalism</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2405.18970</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3142719253 |
source | Publicly Available Content Database |
subjects | Bulk density Freezing Interaction parameters Interfacial properties Liquid-vapor interfaces Mixtures Room temperature Solvation Surface tension Vapor phases |
title | The surface tension of Martini 3 water mixtures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20surface%20tension%20of%20Martini%203%20water%20mixtures&rft.jtitle=arXiv.org&rft.au=Iannetti,%20Lorenzo&rft.date=2024-05-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2405.18970&rft_dat=%3Cproquest%3E3142719253%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-71a2bff267321e6c9cabbde756868e190753a9a8eedf59d376f48aedb71169263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3142719253&rft_id=info:pmid/&rfr_iscdi=true |