Loading…
Restrained triple connected outer perfect domination number for derived graphs
A. Iravithul Basira [6] introduced the concept of restrained triple connected outer perfect domination number of a graph. A restrained dominating set S is said to be a restrained triple connected outer perfect dominating set, if < S > is a triple connected dominating set and < V – S > ha...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3005 |
creator | Mahadevan, G. Priya, K. Sivagnanam, C. |
description | A. Iravithul Basira [6] introduced the concept of restrained triple connected outer perfect domination number of a graph. A restrained dominating set S is said to be a restrained triple connected outer perfect dominating set, if < S > is a triple connected dominating set and < V – S > has a perfect matching. The minimum cardinality of a restrained triple connected outer perfect dominating set (rtopd-set) is called restrained triple connected outer perfect domination number (rtopd-number) and is denoted by Yrtopd(G) In this paper we investigate this parameter for some special types of graphs. |
doi_str_mv | 10.1063/5.0211775 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3143029920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143029920</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-6aa2b624ec03c34df81ccdded39c7f2c72881641546b9926b36e9e86726771b83</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv8GCN2FrJn83RylahaIgPXgL2SSrKW2yZncFv73R9jTMzI-Z9x5C14AXgAW94wtMAKTkJ2gGnEMtBYhTNMNYsZow-n6OLoZhizFRUjYz9PLmhzGbEL2rxhz6na9sitHbsQzSNPpc9T53pa9c2odoxpBiFad9WzZdypXzOXwX9iOb_nO4RGed2Q3-6ljnaPP4sFk-1evX1fPyfl33gvJaGENaQZi3mFrKXNeAtc55R5WVHbGSNA0IBpyJVikiWiq88o2QREgJbUPn6OZwts_payoO9DZNOZaPmgKjxZwiuFC3B2qwYfwXrvsc9ib_aMD6Ly7N9TEu-gu2_1xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3143029920</pqid></control><display><type>conference_proceeding</type><title>Restrained triple connected outer perfect domination number for derived graphs</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mahadevan, G. ; Priya, K. ; Sivagnanam, C.</creator><contributor>M, Seenivasan</contributor><creatorcontrib>Mahadevan, G. ; Priya, K. ; Sivagnanam, C. ; M, Seenivasan</creatorcontrib><description>A. Iravithul Basira [6] introduced the concept of restrained triple connected outer perfect domination number of a graph. A restrained dominating set S is said to be a restrained triple connected outer perfect dominating set, if < S > is a triple connected dominating set and < V – S > has a perfect matching. The minimum cardinality of a restrained triple connected outer perfect dominating set (rtopd-set) is called restrained triple connected outer perfect domination number (rtopd-number) and is denoted by Yrtopd(G) In this paper we investigate this parameter for some special types of graphs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0211775</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Graphs</subject><ispartof>AIP conference proceedings, 2024, Vol.3005 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>M, Seenivasan</contributor><creatorcontrib>Mahadevan, G.</creatorcontrib><creatorcontrib>Priya, K.</creatorcontrib><creatorcontrib>Sivagnanam, C.</creatorcontrib><title>Restrained triple connected outer perfect domination number for derived graphs</title><title>AIP conference proceedings</title><description>A. Iravithul Basira [6] introduced the concept of restrained triple connected outer perfect domination number of a graph. A restrained dominating set S is said to be a restrained triple connected outer perfect dominating set, if < S > is a triple connected dominating set and < V – S > has a perfect matching. The minimum cardinality of a restrained triple connected outer perfect dominating set (rtopd-set) is called restrained triple connected outer perfect domination number (rtopd-number) and is denoted by Yrtopd(G) In this paper we investigate this parameter for some special types of graphs.</description><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv8GCN2FrJn83RylahaIgPXgL2SSrKW2yZncFv73R9jTMzI-Z9x5C14AXgAW94wtMAKTkJ2gGnEMtBYhTNMNYsZow-n6OLoZhizFRUjYz9PLmhzGbEL2rxhz6na9sitHbsQzSNPpc9T53pa9c2odoxpBiFad9WzZdypXzOXwX9iOb_nO4RGed2Q3-6ljnaPP4sFk-1evX1fPyfl33gvJaGENaQZi3mFrKXNeAtc55R5WVHbGSNA0IBpyJVikiWiq88o2QREgJbUPn6OZwts_payoO9DZNOZaPmgKjxZwiuFC3B2qwYfwXrvsc9ib_aMD6Ly7N9TEu-gu2_1xw</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Mahadevan, G.</creator><creator>Priya, K.</creator><creator>Sivagnanam, C.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241211</creationdate><title>Restrained triple connected outer perfect domination number for derived graphs</title><author>Mahadevan, G. ; Priya, K. ; Sivagnanam, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-6aa2b624ec03c34df81ccdded39c7f2c72881641546b9926b36e9e86726771b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahadevan, G.</creatorcontrib><creatorcontrib>Priya, K.</creatorcontrib><creatorcontrib>Sivagnanam, C.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahadevan, G.</au><au>Priya, K.</au><au>Sivagnanam, C.</au><au>M, Seenivasan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Restrained triple connected outer perfect domination number for derived graphs</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-11</date><risdate>2024</risdate><volume>3005</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A. Iravithul Basira [6] introduced the concept of restrained triple connected outer perfect domination number of a graph. A restrained dominating set S is said to be a restrained triple connected outer perfect dominating set, if < S > is a triple connected dominating set and < V – S > has a perfect matching. The minimum cardinality of a restrained triple connected outer perfect dominating set (rtopd-set) is called restrained triple connected outer perfect domination number (rtopd-number) and is denoted by Yrtopd(G) In this paper we investigate this parameter for some special types of graphs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0211775</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3005 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3143029920 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Graphs |
title | Restrained triple connected outer perfect domination number for derived graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Restrained%20triple%20connected%20outer%20perfect%20domination%20number%20for%20derived%20graphs&rft.btitle=AIP%20conference%20proceedings&rft.au=Mahadevan,%20G.&rft.date=2024-12-11&rft.volume=3005&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0211775&rft_dat=%3Cproquest_scita%3E3143029920%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p635-6aa2b624ec03c34df81ccdded39c7f2c72881641546b9926b36e9e86726771b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143029920&rft_id=info:pmid/&rfr_iscdi=true |