Loading…
Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum
During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This...
Saved in:
Published in: | Advanced optical materials 2024-12, Vol.12 (35), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 35 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Zhu, Tianyun Jing, Wenji Deng, Jie Wang, Bo Wang, Ruowen Ye, Tao Shi, Mengdie Ye, Jiexian Cui, Tianyuan Shen, Jinyong Li, Fangzhe Ning, Jun Zhou, Jing Chen, Xiaoshuang |
description | During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This paper proposes to break this limitation by creating a narrow photoresponse band with a high peak responsivity to reject the background radiation and enhance the responsivity to the target with characteristic emission lines. This scheme is numerically demonstrated in a dimerized grating integrated quantum well infrared photodetector, based on critical coupling with a Brillouin zone folding induced quasi‐bound state in the continuum (BIC). The asymmetric deformation of the grating structure folds the photonic band and generates a quasi‐BIC with a tunable high radiation Q factor (QR) at the Γ point. By reducing the doping concentration of the quantum wells for a high absorption Q factor (QA) and tuning the QR to make QR = QA for critical coupling, a narrowband photoresponse with a high peak responsivity is achieved and the background‐limited specific detectivity of 4.55 × 1012 cm Hz1/2 W−1 is obtained for a 2π field of view, surpassing the ideal‐photoconductor limit by 92 times.
The table of contents graphic illustrates the structure of a QWIP integrated with a dimerized grating. Based on this design, by exciting the quasi‐BIC mode and controlling the critical coupling, the QWIP achieves a narrowband absorption, high peak absorptance, and suppresses dark current. Consequently, the background‐limited detectivity of this device reaches 92 times that of an ideal photoconductive detector. |
doi_str_mv | 10.1002/adom.202401857 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3143077823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143077823</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1637-69ad3af84e1a9a60cf4965fae86ef88e053b25f7ce70f97f195afe749d26ba873</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EElVhy9oS6xQ7TuJ42R9KKxVVCLphY7mJ3bokdkmcoux6BM7ISXBUVLGaeaNv3mgeAHcYDTBC4YPIbTkIURghnMb0AvRCzOIAI4ov__XX4LaudwghLwiLaA8ch9lWy4M2G7gqXCV-jt8zvdnCkcg-NpVtTO4nC11qJ3M4kU5mTh-0a-G6hQKOKl0UttEGvlsj4dQWeec0N3mTef6lEbX2-6POB7464ST0rNtKOLbGadM05Q24UqKo5e1f7YPV9PFtPAsWy6f5eLgI9jghNEiYyIlQaSSxYCJBmYpYEish00SqNJUoJuswVjSTFClGlf9YKEkjlofJWqSU9MH9yXdf2c9G1o7vbFMZf5ITHBFEaRoST7ET9aUL2fJ9pUtRtRwj3qXMu5T5OWU-nCyfz4r8AoIyd4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143077823</pqid></control><display><type>article</type><title>Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhu, Tianyun ; Jing, Wenji ; Deng, Jie ; Wang, Bo ; Wang, Ruowen ; Ye, Tao ; Shi, Mengdie ; Ye, Jiexian ; Cui, Tianyuan ; Shen, Jinyong ; Li, Fangzhe ; Ning, Jun ; Zhou, Jing ; Chen, Xiaoshuang</creator><creatorcontrib>Zhu, Tianyun ; Jing, Wenji ; Deng, Jie ; Wang, Bo ; Wang, Ruowen ; Ye, Tao ; Shi, Mengdie ; Ye, Jiexian ; Cui, Tianyuan ; Shen, Jinyong ; Li, Fangzhe ; Ning, Jun ; Zhou, Jing ; Chen, Xiaoshuang</creatorcontrib><description>During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This paper proposes to break this limitation by creating a narrow photoresponse band with a high peak responsivity to reject the background radiation and enhance the responsivity to the target with characteristic emission lines. This scheme is numerically demonstrated in a dimerized grating integrated quantum well infrared photodetector, based on critical coupling with a Brillouin zone folding induced quasi‐bound state in the continuum (BIC). The asymmetric deformation of the grating structure folds the photonic band and generates a quasi‐BIC with a tunable high radiation Q factor (QR) at the Γ point. By reducing the doping concentration of the quantum wells for a high absorption Q factor (QA) and tuning the QR to make QR = QA for critical coupling, a narrowband photoresponse with a high peak responsivity is achieved and the background‐limited specific detectivity of 4.55 × 1012 cm Hz1/2 W−1 is obtained for a 2π field of view, surpassing the ideal‐photoconductor limit by 92 times.
The table of contents graphic illustrates the structure of a QWIP integrated with a dimerized grating. Based on this design, by exciting the quasi‐BIC mode and controlling the critical coupling, the QWIP achieves a narrowband absorption, high peak absorptance, and suppresses dark current. Consequently, the background‐limited detectivity of this device reaches 92 times that of an ideal photoconductive detector.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401857</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Background noise ; Background radiation ; breaking the background noise limitation ; Brillouin zone folding induced quasi‐bound state in the continuum ; Brillouin zones ; Coupling ; dimerized grating ; Folding ; Infrared detectors ; long‐wavelength infrared ; Narrowband ; Noise generation ; Q factors ; Quantum well infrared photodetectors ; Radiation ; Target detection ; Thermal radiation</subject><ispartof>Advanced optical materials, 2024-12, Vol.12 (35), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0190-7715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Tianyun</creatorcontrib><creatorcontrib>Jing, Wenji</creatorcontrib><creatorcontrib>Deng, Jie</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Wang, Ruowen</creatorcontrib><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Shi, Mengdie</creatorcontrib><creatorcontrib>Ye, Jiexian</creatorcontrib><creatorcontrib>Cui, Tianyuan</creatorcontrib><creatorcontrib>Shen, Jinyong</creatorcontrib><creatorcontrib>Li, Fangzhe</creatorcontrib><creatorcontrib>Ning, Jun</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><title>Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum</title><title>Advanced optical materials</title><description>During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This paper proposes to break this limitation by creating a narrow photoresponse band with a high peak responsivity to reject the background radiation and enhance the responsivity to the target with characteristic emission lines. This scheme is numerically demonstrated in a dimerized grating integrated quantum well infrared photodetector, based on critical coupling with a Brillouin zone folding induced quasi‐bound state in the continuum (BIC). The asymmetric deformation of the grating structure folds the photonic band and generates a quasi‐BIC with a tunable high radiation Q factor (QR) at the Γ point. By reducing the doping concentration of the quantum wells for a high absorption Q factor (QA) and tuning the QR to make QR = QA for critical coupling, a narrowband photoresponse with a high peak responsivity is achieved and the background‐limited specific detectivity of 4.55 × 1012 cm Hz1/2 W−1 is obtained for a 2π field of view, surpassing the ideal‐photoconductor limit by 92 times.
The table of contents graphic illustrates the structure of a QWIP integrated with a dimerized grating. Based on this design, by exciting the quasi‐BIC mode and controlling the critical coupling, the QWIP achieves a narrowband absorption, high peak absorptance, and suppresses dark current. Consequently, the background‐limited detectivity of this device reaches 92 times that of an ideal photoconductive detector.</description><subject>Background noise</subject><subject>Background radiation</subject><subject>breaking the background noise limitation</subject><subject>Brillouin zone folding induced quasi‐bound state in the continuum</subject><subject>Brillouin zones</subject><subject>Coupling</subject><subject>dimerized grating</subject><subject>Folding</subject><subject>Infrared detectors</subject><subject>long‐wavelength infrared</subject><subject>Narrowband</subject><subject>Noise generation</subject><subject>Q factors</subject><subject>Quantum well infrared photodetectors</subject><subject>Radiation</subject><subject>Target detection</subject><subject>Thermal radiation</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EElVhy9oS6xQ7TuJ42R9KKxVVCLphY7mJ3bokdkmcoux6BM7ISXBUVLGaeaNv3mgeAHcYDTBC4YPIbTkIURghnMb0AvRCzOIAI4ov__XX4LaudwghLwiLaA8ch9lWy4M2G7gqXCV-jt8zvdnCkcg-NpVtTO4nC11qJ3M4kU5mTh-0a-G6hQKOKl0UttEGvlsj4dQWeec0N3mTef6lEbX2-6POB7464ST0rNtKOLbGadM05Q24UqKo5e1f7YPV9PFtPAsWy6f5eLgI9jghNEiYyIlQaSSxYCJBmYpYEish00SqNJUoJuswVjSTFClGlf9YKEkjlofJWqSU9MH9yXdf2c9G1o7vbFMZf5ITHBFEaRoST7ET9aUL2fJ9pUtRtRwj3qXMu5T5OWU-nCyfz4r8AoIyd4Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhu, Tianyun</creator><creator>Jing, Wenji</creator><creator>Deng, Jie</creator><creator>Wang, Bo</creator><creator>Wang, Ruowen</creator><creator>Ye, Tao</creator><creator>Shi, Mengdie</creator><creator>Ye, Jiexian</creator><creator>Cui, Tianyuan</creator><creator>Shen, Jinyong</creator><creator>Li, Fangzhe</creator><creator>Ning, Jun</creator><creator>Zhou, Jing</creator><creator>Chen, Xiaoshuang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0190-7715</orcidid></search><sort><creationdate>20241201</creationdate><title>Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum</title><author>Zhu, Tianyun ; Jing, Wenji ; Deng, Jie ; Wang, Bo ; Wang, Ruowen ; Ye, Tao ; Shi, Mengdie ; Ye, Jiexian ; Cui, Tianyuan ; Shen, Jinyong ; Li, Fangzhe ; Ning, Jun ; Zhou, Jing ; Chen, Xiaoshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1637-69ad3af84e1a9a60cf4965fae86ef88e053b25f7ce70f97f195afe749d26ba873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Background noise</topic><topic>Background radiation</topic><topic>breaking the background noise limitation</topic><topic>Brillouin zone folding induced quasi‐bound state in the continuum</topic><topic>Brillouin zones</topic><topic>Coupling</topic><topic>dimerized grating</topic><topic>Folding</topic><topic>Infrared detectors</topic><topic>long‐wavelength infrared</topic><topic>Narrowband</topic><topic>Noise generation</topic><topic>Q factors</topic><topic>Quantum well infrared photodetectors</topic><topic>Radiation</topic><topic>Target detection</topic><topic>Thermal radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Tianyun</creatorcontrib><creatorcontrib>Jing, Wenji</creatorcontrib><creatorcontrib>Deng, Jie</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Wang, Ruowen</creatorcontrib><creatorcontrib>Ye, Tao</creatorcontrib><creatorcontrib>Shi, Mengdie</creatorcontrib><creatorcontrib>Ye, Jiexian</creatorcontrib><creatorcontrib>Cui, Tianyuan</creatorcontrib><creatorcontrib>Shen, Jinyong</creatorcontrib><creatorcontrib>Li, Fangzhe</creatorcontrib><creatorcontrib>Ning, Jun</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Tianyun</au><au>Jing, Wenji</au><au>Deng, Jie</au><au>Wang, Bo</au><au>Wang, Ruowen</au><au>Ye, Tao</au><au>Shi, Mengdie</au><au>Ye, Jiexian</au><au>Cui, Tianyuan</au><au>Shen, Jinyong</au><au>Li, Fangzhe</au><au>Ning, Jun</au><au>Zhou, Jing</au><au>Chen, Xiaoshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum</atitle><jtitle>Advanced optical materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>35</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>During infrared detection, the thermal radiation from the background generates substantial photon noise and thus severely limit the capability of an infrared detector to identify a target. Going beyond this limitation has been a long‐standing challenge in the development of infrared detectors. This paper proposes to break this limitation by creating a narrow photoresponse band with a high peak responsivity to reject the background radiation and enhance the responsivity to the target with characteristic emission lines. This scheme is numerically demonstrated in a dimerized grating integrated quantum well infrared photodetector, based on critical coupling with a Brillouin zone folding induced quasi‐bound state in the continuum (BIC). The asymmetric deformation of the grating structure folds the photonic band and generates a quasi‐BIC with a tunable high radiation Q factor (QR) at the Γ point. By reducing the doping concentration of the quantum wells for a high absorption Q factor (QA) and tuning the QR to make QR = QA for critical coupling, a narrowband photoresponse with a high peak responsivity is achieved and the background‐limited specific detectivity of 4.55 × 1012 cm Hz1/2 W−1 is obtained for a 2π field of view, surpassing the ideal‐photoconductor limit by 92 times.
The table of contents graphic illustrates the structure of a QWIP integrated with a dimerized grating. Based on this design, by exciting the quasi‐BIC mode and controlling the critical coupling, the QWIP achieves a narrowband absorption, high peak absorptance, and suppresses dark current. Consequently, the background‐limited detectivity of this device reaches 92 times that of an ideal photoconductive detector.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401857</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0190-7715</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-12, Vol.12 (35), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3143077823 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Background noise Background radiation breaking the background noise limitation Brillouin zone folding induced quasi‐bound state in the continuum Brillouin zones Coupling dimerized grating Folding Infrared detectors long‐wavelength infrared Narrowband Noise generation Q factors Quantum well infrared photodetectors Radiation Target detection Thermal radiation |
title | Achieving Ultra‐High Background‐Limited Detectivity by a Brillouin Zone Folding Induced Quasi‐Bound State in the Continuum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Ultra%E2%80%90High%20Background%E2%80%90Limited%20Detectivity%20by%20a%20Brillouin%20Zone%20Folding%20Induced%20Quasi%E2%80%90Bound%20State%20in%20the%20Continuum&rft.jtitle=Advanced%20optical%20materials&rft.au=Zhu,%20Tianyun&rft.date=2024-12-01&rft.volume=12&rft.issue=35&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401857&rft_dat=%3Cproquest_wiley%3E3143077823%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1637-69ad3af84e1a9a60cf4965fae86ef88e053b25f7ce70f97f195afe749d26ba873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143077823&rft_id=info:pmid/&rfr_iscdi=true |