Loading…

Metasurface-enabled small-satellite polarisation imaging

Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observatio...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Dean, Sarah E, Munro, Josephine, Li, Neuton, Sharp, Robert, Neshev, Dragomir N, Sukhorukov, Andrey A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observations. The relatively low cost of small-satellites makes their use in remote sensing more accessible. However, their size and weight limitations cannot accommodate the bulky conventional optics needed for full-Stokes polarisation imaging. We present the modelling of an ultra-thin topology-optimised diffractive metasurface that encodes polarisation states in five different diffraction orders. Positioning the metasurface in a telescope's pupil plane allows the diffraction orders to be imaged onto a single detector, resulting in the capability to perform single-shot full-Stokes polarisation imaging of the Earth's surface. The five rectangular image swaths are designed to use the full width of the camera, and then each successive frame can be stitched together as the satellite moves over the Earth's surface, restoring the full field of view achievable with any chosen camera without comprising the on-ground resolution. Each set of four out of the five orders enables the reconstruction of the full polarisation state, and their simultaneous reconstructions allow for error monitoring. The lightweight design and compact footprint of the polarisation imaging optical system achievable with a metasurface is a novel approach to increase the functionality of small satellites while working within their weight and volume constraints.
ISSN:2331-8422